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hemoglobin A1C of �6.5%, or fasting plasma glucose of
�126 mg/dl, or a plasma glucose concentration of �200
mg/dl 2 h after a 75 g oral glucose tolerance test or a ran-
dom plasma glucose measurement �200 mg/dl (www.
diabetes.org). There are currently estimated to be around
382 million individuals worldwide that have diabetes. In
the United States (US) alone, 25.8 million individuals (8.3%
of the population) have diabetes. It was estimated that dia-
betes caused at least 548 billion dollars in health expendi-
ture in 2013, and this figure is set to continue growing
(International Diabetes Federation). Understanding the fac-
tors driving this increase is therefore of great economic and
social importance.

B. Prevalence and Associated Morbidity and
Mortality of Obesity

The prevalence of obesity and overweight in the United
States is high. In 2007–2008, 32% of US men and 36% of
US women were obese, and an additional 40% of men and
28% of women were overweight (149). In 2010, more than
one-third of US children and adolescents were overweight or
obese (368). About 5% of Americans have a class III obesity,
i.e., a BMI of �40 kg/m2 (149). The prevalence of obesity and
overweight has increased by 134 and 48%, respectively, since
1976–1980 (492). While overweight and obesity trends
among women have remained stable, rates in men have
continued to rise (149) with a 50 and 25% long-term risk of
developing these conditions, respectively, in the Framing-
ham study (531). These figures vary widely among sex,
ethnic, and racial groups (149), as does the relationship
between BMI and disease risk such that obesity prevalence
is not a definite predictor of the degree of disease risk.

In general, obesity reduces life expectancy by 6–20 yr de-
pending on age and race (152, 397), particularly among
adults below the age of 65 (4, 114, 151, 152, 422). Cardio-
vascular disease, T2DM, cancer, and respiratory diseases
are the leading causes of death in obese individuals (422). It
is less clear whether being overweight carries the same in-
creased mortality risk (4, 151, 286, 397, 422). The associ-
ation between overweight/obesity and mortality risk, how-
ever, varies by sex, ethnicity, and age, which may be why
data are mixed (71, 188, 229, 320, 497, 519). Being over-
weight or obese is associated with an increased risk of cor-
onary heart disease (52, 91, 555). T2DM is strongly asso-
ciated with obesity or overweight in both men and women
(191), and a BMI of �25 kg/m2 was associated with a
2.2-fold greater risk of death from diabetes, a greater asso-
ciation than with any other cause of death (422). However,
as with other diseases, the relationship between BMI and
T2DM risk also varies by ethnicity (314, 499). Other dis-
eases associated with obesity include various types of cancer
(70, 112, 201, 433), ischemic stroke (358, 501, 579), heart
failure (245), dementia (202), venous thrombosis (7), gall-
stones (489), gastroesophageal reflux disease (386), renal

disease (145), sleep apnea (570), and osteoarthritis (83).
Particularly pertinent to this review, maternal obesity is
associated with gestational complications and adverse fetal
and neonatal health outcomes (348, 513). However, there
remains a controversy as to the higher rate of mortality
among the overweight and obese, particularly using self-
reported BMI (244). Some report the so-called obesity par-
adox whereby the overall mortality was lower among those
with T2DM and cardiovascular comorbidity and weight
loss but not weight gain was associated with increased mor-
tality and morbidity (124, 125).

C. Genes � Environment Interactions:
Imprinting (Epigenetics) as a Concept

Although a number of common genetic susceptibility loci
for obesity and T2DM have been identified over the last
decade, the rapid rise in prevalence of these conditions in
the last two decades, a time frame which is not compatible
with a change in our genetic make-up, suggests that the
environment in which we live is an important determinant
of obesity risk. Environmental factors that have been attrib-
uted to this rapidly increasing prevalence of obesity include
increased consumption of highly processed foods that are
high in saturated fat and refined carbohydrates as well as
reduced physical activity (421). However, the wide varia-
tion in BMI among individuals living in the same “obeso-
genic” environment has led to the opinion that obesity risk
is determined by a complex interaction between our genes
and the environment in which we live. How these interac-
tions could occur at the molecular level through epigenetic
mechanisms and how there may be critical time periods
during development when this is more likely to occur will be
discussed in more detail below.

D. Historical Background

1. Early concepts of energy homeostasis regulation

In 1940, Hetherington and Ranson (209, 210) first demon-
strated that lesions of the ventromedial hypothalamus
caused rats to massively overeat and become obese. As later
became apparent, to produce the massive obesity associated
with the “classic” VMH lesion, damage usually extended to
a quite large area including both the ventromedial (VMN)
and arcuate (ARC) nuclei (127, 249, 462). However, it was
not until several years after this fact became evident that the
importance of the ARC and its resident proopiomelanocor-
tin (POMC) and neuropeptide Y (NPY)/agouti-related pep-
tide (AgRP) neurons in the regulation of energy and glucose
homeostasis were recognized (38, 42, 43, 189, 467). Later,
it was shown that large lesions of the lateral hypothalamic
area (LHA) produce profound anorexia and weight loss
(15), which led Stellar (493) to put forward the dual center
hypothesis whereby the VMH was the “satiety center” and
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the LHA was the “feeding center.” This concept held sway
for many years and led to the largely hypothalmocentric
view of energy homeostasis control that still dominates the
thinking and research of many investigators. However, we
now recognize that such control resides within a distributed
network of sites within the brain (183, 184) and that lesions
in one part of this network can alter the defended level of
body weight and adiposity (242). The observation that the
level of defended body weight can be altered by lesions of
areas such as the VMH and LHA led to the idea of a set-
point whose level is set depending on the neural substrates
as well as internal and external environments (242).

However, it was obvious that the brain required some
means of monitoring the metabolic status of the periphery
to enable it to control overall energy homeostasis. Kennedy
(247) was among the first to suggest that body fat storage
might be the source of such feedback. He suggested that
adipose tissue produces a signal, in proportion to its mass,
that is sensed by the brain to regulate changes in intake or
expenditure, and this keeps body fat within a predefined
set-point. This negative-feedback system has been termed
the “lipostatic” hypothesis (247). In fact, the lipostatic fac-
tor postulated by Kennedy was eventually shown to be lep-
tin, a hormone produced by adipose tissue in proportion to
its overall mass (577). However, the basic concept of a
set-point remains highly controversial, and extensive tomes
have been written in defense (243) and rebuttal of this con-
cept (396, 488, 558). What does seem clear is that in most
humans, and some rodent strains that become obese, the
defended body weight can be moved upward fairly easily
while long-term attempts to move them below their higher
body weight by caloric restriction is met with failure in
upwards of 90% of individuals (288, 292, 302). The under-
lying reason for this observation remains unknown, but its
existence serves as the main focus for most research which
attempts to find treatments for obesity.

2. The discovery of leptin and how it changed things

In 1949, investigators at the Jackson laboratory in Bar Har-
bor reported a colony of mice showing severe obesity (223).
These mice were first distinguishable from littermates at 4
wk of age but became four times heavier than wild-type
littermates as adults. Offspring of heterozygous matings
demonstrated the 3:1 ratio characteristic of a recessive gene,
which was subsequently designated ob (now Lep) (223). In
1966, a second mouse strain with severe obesity syndrome
was identified by Coleman and colleagues (220). Mice ho-
mozygous for the mutation were designated diabetes (db)
and displayed early-onset obesity, hyperphagia, and diabe-
tes. These fortuitous observations represented a major
breakthrough in the field of the genetics of obesity, al-
though the nature of the defective gene(s) remained to be
discovered. Prior to the era of sophisticated transgenic ap-
proaches, Coleman and colleagues went on to perform he-
roic parabiosis experiments. They surgically connected the

circulatory system of either wild-type or obese ob mice with
diabetic db mice and found that it produced weight loss and
hypophagia in wild-type and ob mice without affecting db
mice. Based on these observations, Coleman and colleagues
(220) proposed that ob mice lacked a circulating satiety
factor and that db mice overproduced that circulating fac-
tor but could not respond to it. In 1994, Friedman and
collaborators (577) cloned the defective gene of the ob
mouse. Using positional cloning, they found that the ob
gene encode a 4.5-kb RNA secreted by adipose tissue in
proportion to its mass (577). As predicted, administration
of the recombinant OB peptide reduced body weight and
food intake of obese mice (73, 197, 399). Based on these
physiological effects, Friedman named the peptide “leptin”
from the Greek root leptos for “thin.” However, db mice
were insensitive to the weight loss-inducing effect of leptin,
suggesting that the db locus encodes the leptin receptor,
which was subsequently cloned in 1996 (82, 283). Leptin
appears to act primarily on the brain to mediate its effects
on feeding and metabolism because central administration
of leptin has a marked effect on feeding (73), and the stron-
gest expression of leptin receptor occurs in the hypothala-
mus (283, 527). In fact, leptin fulfills all of the predicted
“lipostatic” properties proposed by Kennedy in 1953 (247).
Moreover, the observation that leptin is one of the first
major metabolic hormones to appear during embryogenesis
(215) suggests a role for leptin in perinatal development.

3. Early studies implicating the perinatal environment
in the pathogenesis of obesity and diabetes

Some of the earliest evidence in support of the importance
of the early life environment in determining long-term
health came from studies in the United Kingdom and Swe-
den in the 1930s demonstrating that, within any one age
group, death rates were most affected by the date of birth
and not the year of death (248). Further support for the
importance of the neonatal environment on long-term
health emerged almost 50 years later in studies in Norway
by Forsdahl (155) demonstrating that geographical varia-
tions in atherosclerotic disease were not associated with
current mortality rates but correlated strongly with past
infant mortality rates. The earliest evidence that nutrition
during neonatal life could influence long-term metabolic
health came from the study of individuals who were born
during the Dutch Hunger Winter that occurred in the west-
ern part of the Netherlands at the end of World War II.
These data suggested that low nutrient intake during early
postnatal life actually reduced the risk of obesity at age 19
(428). These observations were supported by pioneering
studies in rats by Kennedy (246) where he altered the plane
of nutrition during the suckling period through manipula-
tion of litter size. Rats reared in small litters where there is
little competition for the mother’s milk gain more weight
during lactation and remain fatter and heavier throughout
life even when fed a standard laboratory chow diet. In con-
trast, rats reared in large litters receive less milk and conse-
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quently gain less weight during suckling. These animals
remain smaller and leaner throughout life. Importantly, it
was demonstrated that if nutrient restriction was initiated
for the same length of time post-weaning, rats rapidly
caught up in weight (552). On the basis of these findings it
was suggested that appetite was determined during the
suckling period and that the hypothalamus played an im-
portant part in mediating these effects (553). These findings
were supported in studies by others in subsequent decades
(252, 377, 392, 413). More recent findings from animal
models demonstrating the importance of the early postnatal
period are discussed below.

Focus on the potential importance of the fetal environment
arose from studies by Barker and colleagues (198) demon-
strating a strong association between birth weight and sub-
sequent risk of development of T2DM and other features of
the metabolic syndrome. These studies demonstrated that
individuals with the lowest birth weight were around six
times more likely to have T2DM or impaired glucose toler-
ance at age 64 compared with those individuals with the
highest birth weight. These findings have now been repro-
duced in over 50 studies worldwide. The relationship be-
tween birth weight and T2DM holds true in monozygotic
(identical) twins (51, 417), suggesting that the fetal environ-
ment plays a critical role in mediating the relationship be-
tween birth weight and long-term metabolic health. While
nutrient supply is one important determinant of fetal
growth, assessing the importance of fetal nutrition in medi-
ating these relationships is difficult in humans. However,
evidence from studies of individuals who were in utero dur-
ing periods of famine have provided direct evidence that
alterations in maternal nutrition during pregnancy can in-
fluence long-term risk of T2DM. Prior to the “Dutch Hun-
ger Winter,” the western part of the Netherlands was a
well-nourished population. The abrupt onset of the famine
and its short duration (5 mo) provided a unique opportu-
nity to retrospectively study the effects of maternal nutrient
restriction on offspring glucose tolerance. At age 50, those
individuals who were in utero during the famine had worse
glucose tolerance compared with those individuals born
either the year before or the year after the famine (427).
Those exposed during late gestation were most affected,
suggesting that the third trimester represents a particularly
vulnerable developmental period in terms of long-term reg-
ulation of glucose homeostasis. In contrast, risk of cardio-
vascular disease and obesity was more pronounced in those
individuals exposed to famine during early gestation (428).
This highlights the different critical periods of development
for different organ systems. A subsequent, larger, study of a
population exposed to the Chinese Famine (1959–1961)
showed a similar association between exposure to subopti-
mal nutrition in utero and increased risk of T2DM in later
life (309). In both studies, it was demonstrated that expo-
sure to a nutritionally rich environment in later life exacer-
bated the detrimental effects of undernutrition in utero. The

causative relationship between poor nutrition in utero and
long-term health has been further substantiated by studies
in animal models (see below).

II. CENTRAL REGULATION OF ENERGY
AND GLUCOSE HOMEOSTASIS

A. The Central-Peripheral Conversation in
the Control of Energy and Glucose
Homeostasis

Energy homeostasis is defined as the balance between en-
ergy intake on the one hand and output as thermogenesis
(heat production) on the other. When intake exceeds out-
put, energy is stored primarily as fat in adipose depots.
When food supplies are limited and intake is restricted,
those adipose stores are called upon as the major energy
source over long periods of time. While it is generally agreed
that the brain is the controller of energy and glucose homeo-
stasis, it is able to carry out this function only because it
receives vital information about the metabolic and physio-
logical status of the body from enteroceptive inputs from
the various organs via metabolic signals and neural affer-
ents. Afferents from the majority of viscera are carried pri-
marily within the vagus (Xth) cranial nerve that has its cell
bodies in the nodose ganglion. Their central axons termi-
nate within the caudal part of the nucleus of the solitary
tract (NTS) in the medulla (96, 442, 443, 466). Other small
unmyelinated nerves from the viscera, which travel with
somatic efferents, have their cell bodies in the dorsal root
ganglia of the spinal cord. Their central processes also ter-
minate in the caudal NTS. Thus the NTS represents the first
important neural link between the viscera and the brain.
These neural inputs carry sensations of stretch, pain in the
viscera, as well as from chemical sensors within the portal
vein, carotid body, and small intestines (96, 442, 443, 466).
Importantly, the brain also monitors the metabolic status of
the body by the transport of hormones such as leptin, insu-
lin, and ghrelin and substrates such as glucose, free fatty
acids, lactate, ketone bodies, and cytokines across the
blood-brain barrier (BBB) (28, 29, 31, 362). The BBB ex-
cludes many toxins and molecules that do not have dedi-
cated transporters from entering the brain by virtue of tight
junctions between the vascular endothelial cells and appo-
sition of astrocyte foot processes on cerebral microvessels.
However, tight junctions in some vessels in areas such as the
ARC may vary in permeability depending on the nutritional
state of the individual (273). Finally, these neural, hor-
monal, and substrate signals from the body are integrated
within a distributed network of brain sites that contain
specialized metabolic sensing neurons (see below) which
gather these signals from the body, together with indirect
neural inputs from the primary senses of taste, smell, sight,
hearing, and sensation, to alter their membrane potential,
neural activity, neuro-transmitter and -peptide release, as
well as gene transcription (303).
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B. Metabolic Sensing Neurons: the Basic
Integrators and Regulators of Glucose
and Energy Homeostasis

In the 1950s Jean Mayer (322) first postulated that there
were neurons in the hypothalamus that sensed changes in
glucose oxidation as a means of regulating feeding. It was
not until 1964 that Oomura et al. (372) and Anand et al.
(16) identified such glucosensing neurons. The majority of
neurons utilize glucose as their primary fuel to produce ATP
when their activity increases. When neuronal activity in-
creases, neuronal glucose transporters 3 (Glut3) increase
the uptake of glucose proportionally (530). Most neurons
can also utilize lactate, long-chain fatty acids, and ketone
bodies as alternate fuels in some instances (47, 131, 312,
445). However, whereas metabolic sensing neurons also
utilize glucose as a primary fuel, ambient extracellular levels
of glucose and other metabolic substrates are “sensed” by
these neurons using a variety of signaling and metabolic
pathways as a means of regulating their activity. Thus,
while most neurons utilize such substrates to fuel their on-
going activity, metabolic sensing neurons do as well, but
also use these same substrates to regulate their activity (50,
280, 301, 303, 338).

These neurons either increase (glucose excited) or decrease
(glucose inhibited) their activity as ambient glucose levels
rise and are conversely inhibited and excited as glucose
levels fall (16, 20, 304, 373). Thus, after a meal, glucose-
excited neurons are generally activated, while glucose in-
hibited neurons are inactivated. During fasting or insulin-
induced hypoglycemia, glucose inhibited neurons are pow-
erfully activated (450, 452, 484). Within the ventromedial
portion of the hypothalamus (VMH), which is composed of
the ARC and VMN, �10–15% of neurons are either glu-
cose excited or inhibited (305). Of those, 40–65% utilize
the pancreatic form of glucokinase as a gatekeeper for the
regulation of glucose-induced changes in their activity
(236). Formation of ATP within glucose-excited neurons
leads to inactivation of an ATP-sensitive K� (KATP) channel
leading to membrane depolarization, entry of calcium via a
voltage-dependent calcium channel, increases in activity,
propagation of an action potential, and release of neuro-
transmitters and -peptides from their axon terminals (20,
305). Glucose-inhibited neurons form nitric oxide and, via
activation of AMP-activated kinase and soluble guanylyl
cyclase, increase neuronal firing when glucose levels fall by
an action on the cystic fibrosis transmembrane receptor
(148). Catabolic ARC POMC neurons are predominantly
glucose excited (221), while anabolic ARC NPY/AgRP
(351) and LHA orexin/hypocretin neurons (350) are mostly
glucose inhibited in type. However, other glucosensing neu-
rons have been identified which utilize several other ion
channels and transporter mechanisms to regulate their ac-
tivity (239, 365, 375, 390).

There remains a controversy as to whether physiological
changes in blood and/or brain glucose are actually involved
in the regulation of feeding as Mayer originally proposed
(129, 172, 305). To summarize this controversy, studies
using very high or low levels of glucose or glucose availabil-
ity, especially in the brain, can inhibit or stimulate feeding,
respectively (186, 474, 479, 529). Some investigators have
shown a relationship between spontaneous, small dips in
blood glucose preceding meals in rats and humans (72, 74,
313). However, others have failed to confirm such a rela-
tionship between blood or VMH glucose levels and meal
onset (129). Also, manipulation of VMH neuronal gluco-
sensing by altering glucokinase activity fails to affect either
short- or long-term feeding (129), while it does markedly
alter the counterregulatory responses to insulin-induced hy-
poglycemia (290). Such results suggest that hypothalamic
glucosensing neurons are not critical regulators of normal
feeding but are important for the defense against hypogly-
cemia.

Many of these same VMH glucosensing neurons are also
fatty acid sensors which respond to long-chain fatty acids
by altering their activity (230, 278, 280, 281, 337, 374).
While early work suggested that this fatty acid sensing was
mediated by intracellular metabolism of long-chain fatty
acids (230), it now appears that much of this sensing is
mediated by fatty acid translocator/CD36 (which appears
to act as a receptor and may also be a transporter of fatty
acids) in many VMH neurons and that this regulatory step
is independent of neuronal fatty acid oxidation (278, 280,
281). Furthermore, although impairment of VMH gluco-
sensing has no effect on energy homeostasis, altering fatty
acid sensing by depletion of VMH neuronal CD36 inhibits
linear growth as well as causes redistribution of fat stores
from visceral to subcutaneous adipose depots and marked
insulin resistance (278). Thus, while the glucosensing prop-
erties of VMH metabolic sensing neurons do not appear to
be critical for the regulation of energy homeostasis, their
ability to sense and respond to long-chain fatty acids is
critical for some aspects of both energy and glucose homeo-
stasis. Importantly for this review, the interaction among an
obesity-prone genotype, diet, and the presence of maternal
obesity has a major effect on both the glucose- and fatty
acid-sensing properties of these VMH metabolic sensing
neurons (281).

In addition to their responses to glucose and long-chain
fatty acids, the activity of many of these same neurons is
also altered by ambient levels of lactate (485) and ketone
bodies (279, 510), both of which are produced locally by
astrocytes (48, 49, 131). They also respond to hormones
produced in the periphery such as leptin (225, 486), insulin
(487, 541), and ghrelin (99) which are transported across
the BBB. Thus the term metabolic (or nutrient) sensor is an
apt term for these neurons. Importantly, while a great deal
of the research on such neurons has focused on ARC and
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VMN neurons, glucosensing neurons have been identified
in the lateral hypothalamus (16, 350), hypothalamic para-
ventricular nucleus (PVN) (128), amygdala (578), basal
ganglia (285), NTS (343), and several other brain areas
known to be involved in the regulation of both energy and
glucose homeostasis (289, 305). Most of these neurons
make critical connections with brain areas that provide ef-
ferent output to a variety of neuroendocrine, autonomic,
and behavioral centers required for such homeostatic pro-
cesses. The network of brain areas containing these meta-
bolic sensors forms a distributed network that functions as
an integrated system. Thus the early observations that de-
struction of the VMH or LHA leads to marked disturbances
in energy and glucose homeostasis (209, 210, 240, 241,
341, 534) do not mean that these are satiety and feeding
centers; it simply means that destroying one node of this
distributed network can lead to dysfunction of its integrated
function. While there is a great deal of redundancy in this
distributed network, many of its component parts can un-
dergo plasticity, particularly during early pre- and postnatal
development through alterations in neural connections and
expression of neuro-transmitters and -peptides (58, 59, 62,
98, 391–393, 490).

C. Homeostatic and Reward-Based Systems

To ensure adequate nutrition, it is necessary for the brain to
have intrinsic neural circuits that sense and regulate the
levels of various nutrients in the blood and body stores. As
mentioned above, a primary importance has been given to
the hypothalamus, in part because this brain region can
integrate hormonal, autonomic, and somatomotor control
mechanisms and, in turn, induce a variety of neuroendo-
crine homeostatic responses (FIGURE 1). However, we now
know that the central systems regulating energy homeosta-
sis involve a distributed and interconnected neural network
(181, 182, 301). For example, the ARC, that was originally
thought to be exclusively “anorexigenic,” contains two
chemically identified neuronal types that play opposite roles
in energy balance regulation: the POMC neurons that are
anorexigenic but also the NPY/AgRP neurons that are
orexigenic (94, 483). Moreover, POMC neuronal activity
can be modulated indirectly via transsynaptic GABAergic
inputs arising from NPY neurons, showing the anatomical
intricacy of these neural networks (17, 100, 516). Arcuate
POMC and NPY neurons project to multiple hypothalamic
and extrahypothalamic sites to regulate feeding (65, 94). Of
particular importance are projections to the PVN because it
is the most thoroughly characterized pathway involved in
feeding and energy balance regulation, and the PVN is an-
atomically connected to endocrine, autonomic, and so-
matomotor systems (461, 506, 544). For example, the par-
vocellular part of the PVN contains corticotropin-releasing
hormone and vasopressin neurons that regulate adrenocor-
ticotropic hormone secretion and thyroid-stimulating hor-
mone neurons that influence thyroid-stimulating hormone

production in the pituitary. In addition to neuroendocrine
neurons, the PVN also contains neurons that send direct
projections to preautonomic sites, such as the brain stem
and spinal cord (458, 506). In addition to forebrain struc-
tures, the caudal brain stem, and particularly the dorsal
vagal complex, plays an essential role in the regulation of
energy homeostasis. The dorsal vagal complex comprises
the dorsal motor nucleus of the vagus nerve, NTS, and area
postrema. Although the hypothalamus predominantly inte-
grates long-term adiposity signals, dorsal vagal complex
neurons appear to be more involved in the short-term con-
trol of feeding control in response to satiety signals (see
Refs. 46, 182 for reviews).

If feeding were controlled solely by homeostatic systems,
most individuals would likely maintain a stable, relatively
lean body weight. However, virtually any mammal will eat
beyond its homeostatic needs when exposed to highly pal-
atable foods such as a high-fat/high-sucrose diet. Such ob-
servations support the contention that the hedonic (“re-
ward”) system plays an important role in regulating feeding
behavior (FIGURE 1). The hedonic system deals with the
rewarding value of stimuli (e.g., food) and has neural cir-
cuits which encode wanting (incentive motivation) and lik-
ing (experienced pleasure) of those stimuli. A key neurobi-
ological substrate involved in incentive motivation to eat is
the mesolimbic dopaminergic pathway. This pathway is
composed of dopamine neurons in the ventral tegmental
area (VTA) of the midbrain that connects to limbic centers
such as the nucleus accumbens, the amygdala, hippocam-
pus, and medial prefrontal cortex (45). The observation
that rodents with defective dopamine signaling in this me-
solimbic system become aphagic and adipsic and can even
die of starvation supports the idea that the mesolimbic do-
paminergic system plays an incentive role in feeding regu-
lation (507, 526). In addition to being activated by a variety
of addictive substances, including cocaine and alcohol,
VTA dopamine neurons are also directly modulated by met-
abolic hormones such as leptin and ghrelin. Leptin exerts a
direct inhibitory influence on VTA dopamine neurons, and
hyperphagia of leptin-deficient mice is blunted in the ab-
sence of dopamine (146, 163, 217, 507). In contrast, ghrelin
increases the activity of VTA dopaminergic neurons and
direct injection of ghrelin into the VTA promotes feeding (3,
354). These studies show that metabolic hormones are not
only involved in the short- and long-term control of energy
homeostasis, but also modulate motivated behaviors and
both our need and desire to eat.

D. Central Roles for Leptin, Insulin, and
Ghrelin

1. Leptin

The discovery of leptin reinforced the concepts originally
proposed by Woods and Porte for insulin (561) that our
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penditure and glucose homeostasis with a more moderate
effect on body weight regulation (27, 44).

Prior to 2005, a widely held view was that most, if not all,
of leptin’s effects are mediated by neurons located in the
ARC. However, peripheral leptin administration also acts
on neurons in other brains regions such as the VMN, LHA,
VTA, and NTS (76, 134, 194, 195, 468). Such observations
slowly moved the attention of the field away from the arc-
uate-centric notion of leptin action. Thus mice lacking
LepRb in SF1-expressing neurons of the VMN develop mild
obesity when fed a chow diet and are markedly sensitive to
high-fat diet-induced obesity, supporting a role for VMN
neurons in leptin’s regulatory actions (121). In addition,
targeted deletion of LepRb in LHA neurotensin neurons
causes early-onset obesity due to hyperphagia and locomo-
tor inactivity (284). Notably, neurotensin neurons appear
anatomically well-poised to relay leptin’s actions on the
mesolimbic dopaminergic system, suggesting that neuroten-
sin neurons may be a crucial point of convergence for ho-
meostatic and hedonic interactions that regulate ingestive
behavior. Supporting a role for leptin on brain reward cir-
cuits, leptin receptors are expressed and functional on do-
paminergic neurons in the midbrain and direct manipula-
tion of LepRb in VTA dopamine neurons influences feeding
behavior (146, 163, 217). Another site of particular interest
outside the hypothalamus is the NTS, a hindbrain nucleus
involved in the processing of meal-related satiety signals
where LepRb mRNA was shown to be expressed (335). But
it was another 12 yr before the functional relevance of these
NTS LepRbs was demonstrated. Downregulation of LepRb
in the medial NTS led to increased body weight and adipos-
ity and caused chronic hyperphagia, likely due to a reduc-
tion in leptin’s potentiation of gastrointestinal satiation sig-
naling such as cholecystokinin (CCK) (204). The NTS also
receives neural inputs from the hypothalamus, and recent
studies have demonstrated that leptin’s modulation of en-
ergy expenditure and brown adipose thermogenesis is via a
GABAergic ARC-PVN-hindbrain pathway (258). In sum-
mary, the effects of leptin on the central control of energy
homeostasis are anatomically distributed and appear to in-
volve a complex, distributed, and interconnected neuronal
network involving neurons located in throughout the brain.

2. Insulin

Despite its sole production by the �-cells in the pancreas,
plasma insulin, like leptin levels, generally parallel overall
levels of carcass adiposity (23, 416). In addition, plasma
insulin levels also vary over a wide range during ingestion
and absorption of nutrients. While peripheral insulin’s
main actions are on glucose homeostasis, several lines of
evidence suggest that insulin can act centrally to affect many
brain functions. First, there are abundant levels of insulin
receptors in several brain areas including the olfactory bulb,
hippocampus, and hypothalamus (147, 226, 238, 573).
There is still a debate about whether insulin is actually

produced within the brain (376, 463), but it does appear
that, despite its large size, it is transported across the BBB
(30). During brain development, insulin acts on its brain
receptors (sometimes in association with insulin-like
growth factor I) as a trophic factor for facets of neural
development (206, 423, 432) including neurite outgrowth
(206, 464) and neuronal differentiation (355) and survival
(359). However, when injected into the hypothalamus of
rat neonates, insulin alters neuronal density in the VMN in
association with increased body weight gain as adults (410).
While controversial (159), some studies suggest that insulin
might cross the placenta to enter the fetal circulation in
humans (332). For example, in rats, insulin injections in
third trimester dams predispose to adult obesity in offspring
(232). However, maternal hyperinsulinemia might increase
transplacental glucose transport to the fetus (378). Mater-
nal hyperinsulinemia and hyperglycemia could thus cause
fetal hyperglycemia with attendant hyperinsulinemia (235)
and later increases in fetal weight in offspring of mothers
with gestational diabetes (511). On the other hand, insulin
clearly does cross the gut wall in the early postnatal devel-
opment in rodents (213, 349) such that elevations in mater-
nal milk insulin levels can be absorbed by the offspring as
potential mediators of obesity development in later life
(176).

In addition to these developmental effects, insulin has im-
portant glucose-dependent actions on the activity of hypo-
thalamic metabolic sensing neurons (451, 487) as one way
in which a signal relating to adiposity can be “sensed” by
the brain. There is a large amount of literature on the effects
of centrally injected insulin on food intake, energy, and
glucose homeostasis. Both chronic and acute intracerebro-
ventricular infusions of insulin reduce food intake (9, 560,
562) and reducing periventricular insulin receptors causes
increased food intake, adiposity, and peripheral insulin re-
sistance (367). However, reducing insulin receptors focally
in the VMH causes glucose intolerance without altering
body weight (388). In mice with selective neuronal knock-
out of insulin receptors, females have increased food intake,
and both males and females develop diet-induced obesity,
mild insulin resistance, and hypertriglyceridemia (68).
However, such mice reportedly had no abnormalities of
brain development or neuronal survival. Direct injections of
insulin into the hypothalamus (415) or via the carotid ar-
teries (426) alter hepatic glucose production (415), al-
though the physiological significance of these studies has
been questioned because of the large doses or nonphysi-
ological conditions used to assess these central actions of
insulin (306). Thus there is a great deal of conflicting infor-
mation about the physiological role of insulin on brain de-
velopment and the regulation of energy and glucose homeo-
stasis. On balance, it seems likely that insulin is transported
across the BBB and does have effects on all of these param-
eters.
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3. Ghrelin

Ghrelin was originally discovered as an endogenous ligand
for the growth hormone secretagogue receptor (GHSR)
(254). In adults, ghrelin is mainly synthesized within oxyn-
tic mucosa cells of the stomach, whereas the primary source
of ghrelin production during neonatal life appears to be the
pancreas (254, 454). In part because of its discovery from
its linkage to GHSR, ghrelin was originally reported to
stimulate growth hormone (GH) secretion (254). But it rap-
idly became evident that it also exerts an important role on
feeding behavior. When injected peripherally or centrally,
ghrelin promotes feeding, suppresses energy expenditure,
and causes weight gain (276, 352, 563). Remarkably, ghre-
lin-induced hyperphagia occurs within 5 min and persists
for 24 h after injection. The observations in both human
and other animals of a preprandial rise and a postprandial
decline in plasma ghrelin levels suggested that ghrelin plays
a specific role in hunger and meal initiation (105, 106, 515).
Based on these physiological effects, it is not surprising that
GHSRs are abundantly expressed in various brain regions
involved in somatic growth, food intake, and body weight
regulation such as the hypothalamus, hindbrain, and mid-
brain (342, 580). Empirical studies employing direct intra-
ARC injections of ghrelin and selective lesions of the ARC
demonstrated the primary importance of ARC neurons,
specifically in mediating ghrelin’s action on feeding (509,
563). Within the ARC, the highest proportion of neurons
activated by systemic ghrelin injection coexpress NPY and
AgRP (100, 540, 554). Consistent with these findings, phar-
macological blockade of NPY or its receptors blunts the
effects of ghrelin on food intake (276, 352). Ghrelin can
also regulate the activity of POMC neurons in the ARC, but
this effect appears indirect and likely involves trans-synap-
tic GABAergic inputs arising from NPY neurons (17, 100,
516).

Leptin and ghrelin therefore appear as two complementary,
yet antagonistic, regulators of energy balance. Notably, the
distribution pattern of GHSR resembles that of LepRb
(401), suggesting that leptin and ghrelin might reciprocally
regulate many of the same neurons. However, whether
there is a direct interaction between leptin and ghrelin sig-
naling at the cellular level remains unclear. For example,
although ARC neurons coexpress GHSR and LepRb,
GHSR knockout mice display unaltered leptin sensitivity
(401). Nevertheless, similar to leptin, the regulatory actions
of ghrelin on feeding likely involve a complex and distrib-
uted neural network. In addition to its actions on hypotha-
lamic neurons, ghrelin also regulates mesolimbic dopami-
nergic neurons in the midbrain to modulate more complex
aspects of feeding such as food-reward behavior (3, 85,
354, 400, 478). More recent genetic evidence demonstrated
that reactivation of GHSR signaling selectively in hindbrain
neurons does not ameliorate ghrelin-induced food intake
but rescues hypoglycemia of GHSR null mice, suggesting

that hindbrain neurons relay ghrelin’s effects on glucose
homeostasis (471).

E. Neuronal Plasticity

The mammalian brain ensures adaptive behavior through
its large capacity for cellular and circuit plasticity. One
unique property of the hypothalamus, compared with other
brain structures such as the cortex and hippocampus, is that
its regulation is to a large degree activity-independent, but
instead is controlled by physiological signals that reflect
environmental conditions. The biological processes in-
volved in neuronal plasticity fall into two major categories:
the birth of new neurons (neurogenesis) and the reshaping
of existing neural circuits (synaptic remodeling). Low rates
of neurogenesis are observed in the mature hypothalamus
under basal conditions (255, 256), and median eminence
tanycytes appear to be a possible source of these newborn
neurons (282). This constitutive hypothalamic neurogen-
esis can be enhanced by hormonal factors. For example,
central injections of ciliary neurotrophic factor (CNTF) in-
duced marked neurogenesis in the hypothalamus that ap-
pears to participate in the weight loss effects of CNTF in
ob/ob and DIO mice (256). Moreover, microimplantation
of neural progenitors that express leptin receptors into the
hypothalamus of newborn db/db mice allows differentia-
tion of the donor cells into neurons that integrate into func-
tional neural circuits that lead to reduced hyperphagia and
obesity (107). Nonneurotropic factors, such as aging and
neurodegeneration, can also promote hypothalamic neuro-
genesis (405). Hypothalamic neurogenesis can also be
downregulated. For example, high-fat feeding alters cellu-
lar remodeling as demonstrated by a reduction in the num-
ber of newly generated cells and the maintenance of old
neurons in the mature hypothalamus (327). Together, these
findings demonstrate that neurogenesis might represent an
important adaptive cellular mechanisms in response to en-
vironmental insults.

Neuronal plasticity of hypothalamic feeding circuits also
occurs through rearrangement of synapses. The excitatory
and inhibitory synaptic inputs to the POMC and NPY neu-
rons are markedly altered in adult ob/ob mice; leptin defi-
ciency increases excitatory inputs on NPY/AgRP neurons
while it decreases excitatory synaptic inputs to POMC neu-
rons (406). Acute leptin injection in adult ob/ob mice rap-
idly (within hours) reverses these effects, both at the elec-
trophysiological and ultrastructural levels. Other hor-
mones, such as ghrelin and corticosterone, also have
organizational effects on hypothalamic neural circuits by
modulating the synaptic inputs of ARC POMC and NPY
neurons in adult mice (193, 406). Moreover, a significant
remodeling of synapses has been reported in obesity-prone
(DIO) rats, with an increase in inhibitory inputs to POMC
neurons in the ARC of DIO rats compared with diet-resis-
tant (DR) rats (218). The capacity of nutritional challenges
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to cause structural changes also appears to differ between
DIO and DR rats. High-fat feeding causes a loss of synapses
onto POMC neurons in DIO rats, but a gain in synaptic
coverage in obesity-resistant DR rats (218). Together, these
observations indicate that remodeling of brain circuits in-
volved in energy balance regulation occurs throughout the
entire lifespan and is influenced by both metabolic and
physiological cues and pathological insults. This neuronal
plasticity allows the elaboration of adaptive behavioral and
physiological responses that are essential for optimal regu-
lation of energy balance.

F. Gut-Brain Interactions

1. Neurohumoral inputs

The brain receives a wide variety of signals from the gastro-
intestinal (GI) tract, via either sensory afferents or hor-
monal signals. The vagus nerve is indisputably the most
important neural link between the gut and the brain. It is the
longest of the cranial nerves and innervates the entire ali-
mentary tract. It comprises fibers carrying afferent sensory
information from the periphery to the brain, but also fibers
carrying efferent motor information from the brain to the
viscera (420). Afferent signals carried by the vagus nerve
include information about gastric stretch, enteroendocrine
signals from hormones released within the GI tract, and
blood glucose and fatty acid levels. The caudal brain stem,
and particularly the NTS via its vagal afferents and effer-
ents, acts as a nodal point in the gut-brain axis. Vagal af-
ferents from the GI tract synapse within subregions of the
NTS, and the activation of these afferents regulates post-
prandial function by inhibiting food intake (465). In turn,
the NTS sends reciprocal projections to other regions of the
brain involved in feeding regulation such as the hypothala-
mus, amygdala, and nucleus accumbens. The NTS therefore
represents a major portal through which visceral afferent
information for homeostatic reflexes enters the brain.

Vagal afferent fibers are also sensitive to a variety of periph-
eral factors, including CCK, an endogenous peptide re-
leased by duodenal enteroendocrine cells (310). CCK is re-
leased after a meal and inhibits food intake [i.e., reduces
meal size and induces meal termination (480)] in part by
increasing the firing rate of vagal afferents projecting to
the NTS (170, 347). The regulatory action of CCK on
vagal-NTS projections appears to be mediated via the
CCK-A receptor subtype (64, 259, 277, 395).

In addition to CCK, the gut secretes a number of other
hormones that signal to the brain to regulate feeding. These
hormonal effectors include ghrelin, peptide YY (PYY), and
glucagon-like peptide-1 (GLP-1). Ghrelin is produced
mainly by the gastric mucosa and is the only known periph-
eral hormone that promotes feeding. That secretion of ghre-
lin is increased in response to starvation, increased before a

meal, and suppressed by meals, supports the hypothesis that
ghrelin is primarily involved in meal initiation (105, 106,
515). The hypothalamus is a primary site of ghrelin’s orexi-
genic effects. The highest density of ghrelin receptors and
ghrelin-responsive neurons is found in the hypothalamus,
particularly in the ARC, VMN, and PVN (211, 352, 342,
580). The observations that blockade of the gastric vagal
afferent abolishes the feeding response to intravenous ghre-
lin and that GHSRs are expressed in vagal terminal suggest
that ghrelin also induces some of its regulatory effects
through the vagus nerve (115). For example, ghrelin does
not stimulate feeding in human patients with surgical pro-
cedures involving vagotomy (115). However, data to the
contrary exist regarding an essential role for the vagus in
transmitting peripheral ghrelin’s effects on feeding (19).

PYY is produced by L-type enteroendocrine cells, mainly in
the ileum and colon, in response to the caloric content of the
meal (5). The bioactive peptide, PYY3–36, is stimulated in
proportion to the energy content of food and peaks 1–2 h
postprandially. Peripheral administration of PYY3–36 in-
hibits food intake in rodents and humans (34, 35).
PYY3–36 has a high affinity for the NPY Y2 receptors,
which are widely distributed throughout the periphery and
CNS, including in vagal endings (253). Consistent with
these findings, gastric vagotomy blocks the anorectic effects
of PYY3–36 (1, 253). In addition, PYY3–36 acts on hypo-
thalamic neurons to reduce feeding and ARC injection of
PYY3–36 inhibits food intake and inhibits the electrical
activity of NPY nerve terminals causing a reduction of the
inhibition of POMC neurons (35).

GLP-1, GLP-2, and oxyntomodulin are produced by the
posttranslational processing of the preproglucagon gene in
the gut and the brain stem (24). The GLPs are produced by
intestinal L-cells in response to fatty acids or carbohydrates.
GLP-1 is released into the circulation after a meal to inhibit
gastric secretion and emptying and induce postprandial se-
cretion of insulin (24, 268). Direct oxyntomodulin injection
into the ARC causes a sustained reduction in refeeding after
a fast, indicating the importance of the hypothalamus and
particularly the ARC in mediating oxyntomodulin’s ano-
rectic action (113). However, intra-ARC administration of
the GLP-1 receptor antagonist exendin9–39 does not block
the anorectic action of GLP-1, indicating that oxyntomodu-
lin and GLP-1 use different neural pathways to mediate
their feeding effects (113). Sites of action of GLP-1 include
neurons in autonomic control sites such as brain stem cat-
echolamine neurons (565, 566).

2. Gut microbiota

Gut microflora and their interactions with obesity have be-
come a subject of great interest in recent years. Leptin-
deficient ob/ob mice have significant reductions in Bacte-
roides and increases in Firmicutes, two major gut bacterial
phyla (307). Similarly, some obese humans demonstrate an
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increase in Firmicutes in their stools (308), and prolonged
ingestion of a high-fat diet is associated with decreased
bacterial abundance and increased Firmicutes content
(520). Importantly, bacterial transplants from lean and
obese mice into otherwise high-fat obesity-resistant, germ-
free mice cause them to develop the weight gain phenotype
of the donors, suggesting a causal role of gut microbiota in
the development of obesity (521, 522). Also, increased body
and fat mass in human twin pairs discordant for obesity
could be transmitted to germ-free mice by transplantation
of the fecal microbiota of those humans (438). The mecha-
nism by which alterations in microbial gut flora might de-
termine the propensity of an individual to become obese has
not been established. However, one hypothesis is that these
microflora might alter nutrient absorption by changing the
absorptive surface of the gut in association with inflamma-
tory changes induced by some diets (429, 520, 521). Such
changes in gut permeability might become more important
as the individual matures since large molecules such as an-
tibodies, leptin, and insulin cross the neonatal intestinal
barrier and enter the circulation (287, 349). Regardless of
the specific mechanism, early postnatal nutrition and milk
content might alter gut microbiota as an explanation for the
increased obesity of diet-resistant pups cross-fostered to
obese DIO dams (75, 176, 272, 315).

G. Peripheral Organs and Glucose
Homeostasis

1. Pancreas

The pancreatic �-cells within the islets of Langerhans are
the only cells that have the capability to secrete insulin.
They are therefore central to the appropriate regulation of
glucose homeostasis. The islets of Langerhans were first
identified in 1869 by the German anatomist Paul Langer-
hans and, despite the fact that they constitute �5% of pan-
creatic mass, they are critical for maintenance of glucose
homeostasis. They contain five major cell types: �-cells (that
produce glucagon), �-cells (that produce somatostatin), PP
cells (that produce pancreatic polypeptide), �-cells (that
produce ghrelin), and �-cells (that produce insulin and amy-
lin). Pancreatic �-cells produce insulin primarily in response
to elevated levels of glucose. However, production can also
be increased in response to other factors such as certain
amino acids, free fatty acids, and the sulfonylurea class of
antidiabetic drug. The stimulation of insulin secretion in-
volves changes in �-cell electrical activity and ultimately
exocytosis of insulin (reviewed in Rorsman and Braun,
447). T2DM is thought to arise in general when pancreatic
�-cells malfunction such that they cannot further increase
insulin secretion to compensate for progressive peripheral
tissue insulin resistance. This may arise because of an inher-
ent or progressive reduction in �-cells mass (reviewed in
Weir and Bonner-Weir, 545), genetic defects that reduce
�-cell function (reviewed in Bonnefond et al., 54), program-

ming events that occurred in early life resulting in a perma-
nent reduction in �-cell mass and/or function (reviewed in
Reusens et al., 435), or postnatal triggers that could involve
epigenetic mechanisms (171).

2. Liver

The liver is the major site of glucose production under fast-
ing conditions, and thus resistance to the action of insulin to
inhibit hepatic glucose production can contribute to hyper-
glycemia (66). There are a number of mechanisms by which
hepatic insulin resistance can occur. Nonalcoholic fatty
liver disease (NAFLD), which is thought to affect up to
30% of the population in the Western world, is thought to
be a major contributing factor (571). Under physiological
conditions fatty acids enter hepatocytes and are either oxi-
dized by mitochondria or stored in the form of triglycerides.
However, under conditions where there is an imbalance
between influx and oxidation excessive storage occurs. This
can occur, for example, when lipid storage capacity of adi-
pose tissue becomes exceeded, leading to increased flux of
fatty acids into the liver and consequently increased depo-
sition of triglycerides and other lipid intermediates such as
phosphatidic acid and diacylglycerol (21). These can result
in activation of various kinases (e.g., inhibitor of kappa B
kinase and Jun NH2-terminal kinase) that inhibit insulin
signaling through serine phosphorylation of IRS-1 and con-
sequently cause hepatic insulin resistance. In addition, there
is evidence to suggest that under conditions of hyperinsu-
linemia, as a consequence of resistance to the action of
insulin in relation to inhibition of hepatic glucose produc-
tion, insulin’s ability to promote de novo lipogenesis can
remain intact. This will further promote hepatic triglyceride
accumulation (66). There is good evidence to suggest that
fatty liver and hepatic insulin resistance can develop as a
result of both early environmental (86) and genetic factors
(168).

3. Skeletal muscle

Skeletal muscle is the major site of glucose disposal post-
prandially and thus insulin resistance at this site is a sub-
stantial contributor to the development of T2DM. Skeletal
muscle takes up glucose in an insulin-dependent manner as
a result of the stimulation of translocation of the glucose
transporter GLUT4 to the plasma membrane via stimula-
tion of the phosphoinositol 3-kinase-protein kinase B (Akt)
pathway. In addition to this insulin-stimulated pathway,
there is an alternative pathway that potentiates glucose up-
take into skeletal muscle that is activated by exercise and
caloric restriction (453). This is mediated by AMP kinase,
which has therefore become a focus of potential therapeutic
strategies for insulin resistance and associated syndromes.
As with liver, skeletal muscle is a major site of triglyceride
accumulation in situations where the adipocyte lipid stor-
age capacity has been exceeded. There is a strong positive
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correlation between muscle triglyceride content and insulin
resistance (385). The mechanism(s) by which increased
lipid accumulation induces insulin resistance in skeletal
muscle remains a subject of debate (reviewed in 55). How-
ever, it has been suggested that such lipotoxicity results in
increased levels of bioactive lipid metabolites such as cer-
amides that are known to inhibit activation of protein ki-
nase B. Paradoxically intramyocellular triglycerides are also
increased in highly insulin-sensitive trained athletes (re-
viewed in 89). This suggests that it is not the presence of the
triglycerides per se that is causing the insulin resistance and
that perhaps if their turnover is increased, for example, by
regular exercise, generation of lipotoxic intermediates is
reduced.

4. White adipose tissue

In recent years, the contribution of adipose tissue to whole
body glucose homeostasis and regulation of energy balance
has been increasingly recognized, and it is therefore no lon-
ger considered merely a site of lipid storage. It can both
directly and indirectly influence glucose homeostasis. Adi-
pose tissue takes up glucose in an insulin-dependent man-
ner. Although it was initially considered to account for only
�5% of postprandial glucose uptake, studies with trans-
genic animals have suggested that loss of insulin-dependent
glucose uptake to adipose tissue leads to substantial loss of
glucose tolerance (2). In addition to directly taking up glu-
cose, adipose tissue can indirectly affect whole body glucose
homeostasis through release of factors including free fatty
acids, adipokines (e.g., resistin and adiponectin), and in-
flammatory mediators (e.g., TNF-�) that influence glucose
uptake and/or insulin action in other tissues, especially skel-
etal muscle (reviewed in 165). It is well established that
obesity-associated insulin resistance is associated with in-
flammation of adipose tissue and consequently increased
production of inflammatory markers and cytokines (includ-
ing TNF-�, IL-6, and IL-1�) that inhibit insulin signaling
(reviewed in 144). Adipose tissue is also the major site of
leptin production, a major regulator of energy balance
across the life course (discussed in detail elsewhere in this
review).

III. PERINATAL BRAIN DEVELOPMENT

The hypothalamus develops from the rostral diencephalon
after induction by the underlying prechordal plate. Classi-
cal birth dating studies using [3H]thymidine or the thymi-
dine analog BrdU revealed that the majority of neurons
composing the hypothalamus are born between embryonic
day (E) 11 and E14 in mice and E12 and E17 in rats (14,
101, 227, 317, 383). Hypothalamic neurons acquire their
terminal peptidergic phenotype soon after they are gener-
ated. For example, melanin concentrating hormone neu-
rons in the LHA are born between E12 and E13 in rats, and
its mRNA is detected in the LHA as early as E13 (63). More

recent genetic cell lineage experiments also indicated that
hypothalamic progenitor cells can give rise to neurons that
express antagonistic neuropeptides in adult life. For exam-
ple, embryonic Pomc-expressing precursors can subse-
quently adopt either a POMC or an NPY phenotype (383).

Although hypothalamic neuronal proliferation and differ-
entiation occurs primarily during the second half of gesta-
tion in rodents, the rodent hypothalamus remains relatively
immature at birth and continues to grow during the first
2–3 wk of postnatal life. Axonal tract tracing experiments
in mice showed that hypothalamic axonal connections are
not formed at birth. For example, ARC axons reach their
target nuclei between postnatal day (P) 6 and P16 (60).
Axon terminals containing NPY/AgRP are found in a pat-
tern that coincides with the innervation of axons from the
ARC (25, 187, 361). Efferent projections from the VMN
and dorsomedial nucleus (DMN) appear to develop prior to
those from the ARC and are fully established by P6 and
P10, respectively (60). Synapses are another key component
of neuronal connectivity. We still know relatively little
about the exact time point (if any) at which synapse assem-
bly is fully established in the hypothalamus, but a few re-
ports indicate that synapses mature gradually in the hypo-
thalamus from birth to adulthood (319, 328).

Brain stem projections develop relatively early in rodents.
Brain stem catecholaminergic inputs to the PVN are present
as early as P1 in rats (440). However, different neurotrans-
mitter systems show different developmental patterns. For
example, the density of noradrenergic projections to the
PVN is relatively low at birth and gradually increases to
reach adult levels at weaning. In contrast, adrenergic pro-
jections are relatively high in the PVN of newborn rats but
gradually decrease until weaning (440). Reciprocal de-
scending projections from the hypothalamus to the caudal
brain stem also develop early in life. Retrograde tracing
experiments showed that hypothalamic neurons, such as
those in the DMN, PVN, and LHA, send axonal projection
to dorsal vagal complex neurons at birth and continue to
develop to achieve adult-like patterns at weaning (439,
441). In summary, projections to and from the hypothala-
mus and brain stem develop primarily after birth and ap-
pear chemically and structurally immature until weaning.

The considerable importance of postnatal hypothalamic de-
velopment in rodents differs from that in humans and non-
human primates where the hypothalamus develops almost
entirely during fetal life. For example, in Japanese ma-
caques NPY/AgRP fibers innervate the PVN as early as
gestational day 100 (i.e., late second trimester) and a ma-
ture pattern of NPY/AgRP projections is not apparent until
gestational day 170 (180). These findings emphasize the
importance of recognizing species differences in terms of
timeline of developmental events. Although the regional
development of the rodent hypothalamus proceeds on a
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timeline of days, the same developmental process takes
weeks to months in human and non-human primates. Sim-
ilar to non-human primates, the human hypothalamus also
develops primarily prenatally with NPY-containing axons
detected in the ARC and PVN as early as at 21 weeks of
gestation (262).

IV. GENETIC BASIS OF OBESITY

A. Single Gene Mutations

Although single gene mutations that cause obesity are rare,
their identification has helped greatly in our understanding
of energy homeostasis regulation. One very successful ap-
proach to identify monogenic forms of obesity has been to
focus on children who were extremely obese from an early
age and to use a combination of biochemical and genetic
approaches to identify the affected locus (reviewed in 366).
O’Rahilly and colleagues (345) used this approach to iden-
tify a pair of cousins who were severely obese as a result of
having undetectable levels of leptin. They were established
as having a homozygous frame shift mutation in the leptin
gene (345). Treatment of these and other leptin-deficient
individuals with daily injections of recombinant leptin nor-
malized their body weight, thus proving causality between
the single gene mutation and the obese phenotype (143). To
date, there are still only 24 confirmed instances of individ-
uals with this mutation (S. Farooqi, personal communica-
tion). Furthermore, these studies demonstrated that human
food intake regulation, as in the leptin-deficient ob/ob
mouse, was dependent on a functional leptin-signaling
pathway. Since these initial studies, it has been demon-
strated that human obesity can result from defects in vari-
ous components of the leptin signaling pathway including
the leptin receptor (88), POMC (270), and the melanocor-
tin-4 receptor (MC4R) (569). The latter is now thought to
be the most common monogenic form of obesity, with some
studies demonstrating that �1 in 200 obese people have
disease-causing mutations in the MC4R (12, 274). There
are now over 20 single gene disorders that have been shown
to cause severe obesity. In addition to direct components of
the leptin signaling pathway, they include genes such as
prohormone convertase 1 (which is required for the pro-
cessing of pro-peptides into active peptides such as POMC)
(228), SIM 1 (a transcription factor required for hypotha-
lamic development) (425) and SH2B1 (an adaptor protein
that modulates signaling through tyrosine kinase and JAK-
associated cytokine receptors) (123). It is notable that these
single gene mutations generally influence central sensing
and control of energy homeostasis rather than through pe-
ripheral systems. Further analyses of these individuals dem-
onstrate that the defects influence appetite and satiety re-
sulting in increased food intake. In contrast, little or no
effect is observed on energy expenditure, with MC4R mu-
tation patients being the exception and showing a small but
significant reduction in metabolic rate (264).

B. Obesity as a Polygenic Disorder

As above, although there are several single gene mutations
that have been identified which cause obesity and diabetes
in humans (142), approximately two-thirds of obesity is
inherited in what is probably a polygenic fashion (57, 502).
Genome-wide association studies (GWAS) were greatly fa-
cilitated by the International HapMap (www.hapmap.org)
defining common single-nucleotide polymorphisms (SNPs)
and existing linkage disequilibrium that provided near-
genomic coverage of common genetic variations. We are
now in the fourth wave of GWAS studies of obesity that has
used a variety of variables such as BMI as a continuous trait
or extremes of obesity in large populations of children or
adults. FTO was one of the first genes identified, originally
as having a high association with T2DM but later showing
that this was through its association with obesity (158).
Similarly, although homozygous inheritance of mutations
of the MC4R leads to severe obesity (142), variants near the
MC4R gene have a relatively strong association with obe-
sity (269, 581). Other variants with obesity associations are
BDNF, TMEM18, SH2B1, NEGR1, MTCH2, FAIM2, and
GNPDA2 (36, 203, 216, 219, 434). It is important to point
out that, as opposed to being causal for obesity, the way
that direct mutations of the MC4R gene are (142), these
GWAS genes are merely associations. Many are in noncod-
ing areas of the genome and might be markers rather than
playing any contributory role in obesity causation (456).
However, several of the genes such as BDNF, MC4R,
SH2B1, NRXN3, TMEM18, and NEGR1 are known to be
involved in the regulation of energy homeostasis, reward,
and/or neural development (142, 158, 179, 205, 321). Im-
portantly, FTO has been shown to play a critical role in
leptin receptor trafficking (500). There are also likely to be
many other genes that singly or in combination contribute
to the genetic propensity to become obese which have yet to
be identified by such studies. In addition, epigenetic modi-
fications of some of these known or as yet to be identified
genes are likely to play a critical role in determining their
expression under conditions of varying environmental con-
ditions.

V. PERINATAL ENVIRONMENT AND THE
DEVELOPMENT OF OBESITY AND
T2DM

A. Prenatal Influences

1. Parental undernutrition

Addressing the consequences of parental undernutrition is
technically challenging in a human context. The best evi-
dence for a direct effect of undernutrition during pregnancy
on long-term metabolic health of the offspring has come
from the study of individuals who were in utero during
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two generations, at least in mice (162). This is accompanied
by changes in gene expression in testes and sperm and
global DNA methylation in the sperm.

3. Prenatal stress and offspring obesity and diabetes

Psychosocial stress is a common factor in human existence.
Such stress increases the likelihood of becoming obese and
diabetic in humans (316, 449) and rodents (140, 431, 503).
Not surprisingly, severe stress during pregnancy can have
major adverse effects on offspring. Many of these effects are
likely due to the fact that cortisol, which is released in
stressful situations, can cross the placenta and alter the
development of the brain and other organs (137, 237, 364).
In addition to a range of abnormalities in behavior and
cognitive function (364), there is evidence that severe ma-
ternal psychosocial stress is associated with higher BMI,
percent body fat, insulin resistance, and abnormal lipid pro-
files (137, 139) and hypothalamo-pituitary-adrenal dys-
regulation in young adult offspring (138). Much of our
knowledge of the mechanisms underlying these abnormali-
ties comes from rodent studies in which dams are subjected
to different types of stress and/or corticosteroids during
various stages of gestation. As a broad generalization, de-
pending on the stage of pregnancy, prenatal stress or exog-
enous glucocorticoids can have a major adverse impact on
the development of the brain, including neurotransmitter
systems and brain areas involved in the regulation of energy
and glucose homeostasis (161, 237, 437) and pathways
regulating motivated and reward behaviors (208, 323). De-
pending on the timing of stress and the sex of the offspring,
adverse offspring outcomes of prenatal stress include per-
manent dysfunction of the neuroendocrine axis (237) and
stress responsiveness (160, 208), delayed learning (160) and
abnormal glucose tolerance, hyperphagia, as well as in-
creased body weight and adiposity (111, 363, 387, 508,
546). Importantly, prenatal stress results in less maternal
grooming and attention in offspring (81, 418), which can
have important effects on offspring behavior and metabolic
phenotype (80, 81, 95). In keeping with these fetal/neonate-
maternal interactions, at least some of the abnormalities in
offspring stress responsivity can be reversed by blocking the
mother’s stress-induced corticosterone response (32), by
fostering their offspring to nonstressed dams (32) or by
postnatal handling (482). Intriguingly, in addition to an
effect of maternal stress on developing offspring, paternal
stress prior to mating significantly reduced the stress re-
sponsivity of resultant offspring with global changes in
transcriptional regulation suggestive of epigenetic program-
ming (444). Unfortunately, no data were presented with
regard to either alteration in adiposity or glucose tolerance
in this study. Nevertheless, such studies, if they can be trans-
lated to the human condition, suggest that much of the dam-
age done by prenatal stress can be undone by either ameliorat-
ing the mother’s stress response or by postnatal manipulations
that control the offspring-mother interactions.

4. Gestational diabetes

Initial epidemiological studies highlighted the association
between low birth weight and increased metabolic disease
risk in later life, observations that have been reproduced in
over 40 populations worldwide (356). However, in some of
these studies, such as those of native North American pop-
ulation, increased risk of T2DM and metabolic syndrome
was also observed at the high birth weight end of the spec-
trum (324). These populations have a high prevalence of
T2DM, obesity, and consequently gestational diabetes
(�10% of all pregnancies) (157). Therefore, the increased
risk of metabolic disease in individuals with high birth
weight was proposed to reflect an increased risk of diabetes
in the macrosomic offspring of women with gestational
diabetes (108, 318, 403, 536). This hypothesis is supported
by sib pair studies that have demonstrated a greater preva-
lence of T2DM and high BMI in siblings born after the
mother was diagnosed with T2DM compared with those
born prior to the development of T2DM (109). Further
evidence for the association between maternal gestational
diabetes and increased offspring weight being causative has
come from a retrospective study that demonstrated that
intensive treatment by diet and/or insulin of gestational di-
abetic mothers attenuated this association (212).

Studies in animal models have also provided strong evi-
dence that gestational diabetes can cause increased risk of
diabetes in the offspring (FIGURE 2). In most rodent studies,
the effects of maternal diabetes have generally been assessed
using models where diabetes is induced in the mother by
chemical destruction of the maternal �-cells using strepto-
zotocin (reviewed by Van Assche et al., 528). The pheno-
type of the offspring is determined by the severity of the
glucose intolerance induced in the mother. The offspring of
mildly diabetic mothers are large at birth and in neonatal
life demonstrate an apparent enhanced development of
their endocrine pancreas. However, in adulthood they have
a deficit in their insulin secreting capacity (199) and develop
impaired glucose tolerance (6, 472). The offspring are also
hyperphagic, leptin resistant, and obese (491). This is asso-
ciated with hypothalamic defects (409) including a reduc-
tion in neuronal connections between the ARC and the
PVN (491). If the maternal diabetes is severe, the offspring
are born small for gestational age. As a result of overstimu-
lation by the high glucose levels, the offspring �-cells are
almost completely degranulated with lower insulin content
and the offspring become insulin resistant as adults (6). In
light of the growing epidemic of obesity, a growing number
of animal models of maternal diet-induced obesity are being
established (see above and below). In some of these it has
been demonstrated (unsurprisingly) that the dams develop
impaired glucose tolerance during pregnancy. Although
gestational diabetes is not the only altered metabolic pa-
rameter in these models, it is conceivable that at least some
of the detrimental consequences of maternal obesity in the
offspring are caused by accompanying gestational diabetes.
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B. Postnatal Influences on Offspring
Metabolic Outcomes

1. Maternal-infant interactions

Early infancy exposure to a variety of experiences and met-
abolic milieus can have an important impact on the ways in
which the infant learns to cope with their environment. The
content of breast milk is influenced by the physiological and
metabolic state of the mother and can have important ef-
fects on the metabolic state and feeding preferences of their
infants. Hormones such as leptin and insulin are secreted
into the milk and, during early infancy, can be absorbed
directly into the bloodstream of suckling infants (78, 176,
213, 234, 349). In addition, the milk content of nutrients
such as essential fatty acids which are required for neural
development (524) are heavily influenced by the genetic and
metabolic status of the mother (176). While many studies
support a protective effect of breast versus formula feeding
during infancy against later obesity and glucose intolerance
(104, 154, 266, 379), some suggest that factors such as
maternal diabetes might have an adverse effect on the met-
abolic development of their offspring (408). In rodents,
cross-fostering of genetically obesity-resistant (DR) pups to
obese dams with a genetic propensity to become obese on
high-fat diets (DIO) causes them to become obese and insu-
lin resistant when subsequently exposed to a high-fat diet as
adults (176). Much of this effect may be attributed to ab-
normalities in milk content of nutrients such as poly- and
monounsaturated fatty acids and hormones such as insulin
and leptin which are essential for normal brain develop-
ment (176). Similarly, dietary choices of the breast-feeding
mother or early exposure to specific tastes and orders in
infant formulas can have marked effects on dietary and
taste preferences of the developing infant (154, 329–331,
518). In both humans and experimental animals, the major
issue left unanswered is what basic mechanisms underlie
these persistent changes in behavior as well as metabolic
and physiological function. Some are associated with
changes in the anatomical development of pathways critical
to these functions (62), while others may be due to epige-
netic changes in gene expression, or both.

2. Catch-up growth in intrauterine growth
retardation and accelerated postnatal growth

Accelerated early neonatal growth and/or obesity has been
shown to amplify the detrimental consequences of being
born small for gestational age on metabolic health out-
comes. The original Hertfordshire studies by Hales et al.
(198) demonstrated that the men with the worst glucose
tolerance at age 64 were those that were in the lowest quar-
tile of birth weight but who were obese as adults. Likewise,
in the Dutch Hunger Winter studies, the worst glucose tol-
erance was observed in individuals who were exposed to
famine in utero but became obese as adults (427). The par-

ticular detrimental effects of rapid growth during childhood
following fetal growth restriction emerged from a study of
primary school children in South Africa. Those with a low
birth weight who gained weight rapidly during early child-
hood had the worst glucose tolerance at age 7 (102). Studies
in Finland also demonstrated that men and women who
develop T2DM are those born small for gestational age and
then cross BMI centiles between the ages of 2 and 11 (141).
These detrimental effects of catch-up growth may be related
to the observation that during periods of such accelerated
growth there is preferential accumulation of fat mass rather
than lean tissue (344). Studies in animal models reinforce
this concept that rapid postnatal growth following in utero
growth restriction is detrimental to long-term metabolic
health, including increased risk of obesity. Rodent models
of maternal protein restriction, caloric restriction, and in-
trauterine artery ligation, which all demonstrate low birth
weight, develop increased adiposity when suckled by nor-
mally fed dams during the lactation period and therefore
undergo postnatal catch up growth (381, 475, 532).

There is now also growing evidence to suggest that acceler-
ated postnatal growth not only exaggerates the effects of
suboptimal growth in utero but can also have detrimental
effects on later health regardless of an individual’s birth
weight. This is particularly prominent in relation to risk of
increased adiposity and obesity. At least three systematic
reviews demonstrate in humans that accelerated postnatal
growth increases risk of subsequent obesity (26, 346, 371).
These studies show associations, but do not provide infor-
mation regarding the causes of the accelerated growth.
However, in humans, both observational and randomized
feeding trials suggest that nutritionally induced rapid
weight gain in the first half of infancy predicts later obesity
and cardiovascular risk factors such as higher blood pres-
sure (173, 523, 547). Studies comparing breast-fed infants
to formula-fed infants revealed that the former were at re-
duced risk of obesity (18, 200). These observational studies
do not provide causal evidence that nutrition per se medi-
ates these relationships. However, it is well known that
formula-fed infants gain more weight over the first year of
life than breast-fed infants (120). Causal relationships be-
tween nutrition during infancy and subsequent metabolic
health have emerged from randomized intervention studies
and control trials. In these studies low levels of nutrient
intake during the neonatal period are protective against risk
of obesity and cardiovascular disease (257, 476, 477). The
precise duration of this early neonatal critical time window
for determination of obesity risk is not clear. However, it
has been suggested that it could be as little as the first post-
natal week of life (495). Animal models have again con-
firmed these studies in humans. Use of a range of animal
models has repeatedly confirmed the fact that early overnu-
trition in the neonatal period predisposes to later obesity
(FIGURE 2). Raising rodent pups in small litters increases
their intake and markedly increases their propensity to be-
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come obese as adults (231, 246). Similarly, overfeeding neo-
natal rats for the first 18 days of life by intragastric tubes
markedly increases their body weight gain (549). On the
other hand, raising rodent pups in large litters restricts their
access to food and can protect even genetically obesity-
prone animals from becoming obese (231, 392).

VI. GENE-ENVIRONMENT INTERACTIONS

A. Epigenetics

The term epigenetics (literally meaning “above the genet-
ics”) was first defined by the developmental biologist Con-
rad Waddington as the “interactions of genes with their
environment which bring the phenotype into being” (539).
The epigenetic changes that mediate this interaction include
alterations in DNA methylation, covalent modifications of
histone tails (e.g., acetylation, methylation, phosphoryla-
tion, and ubiquitination), and expression of noncoding
RNAs (e.g., miRNAs). The phenomenon of epigenetics
therefore explains how one genotype can give rise to mul-
tiple different phenotypes through alterations in the epig-
enotype. It also provides a molecular framework through
which the environment can interact with the genome to
alter gene expression and thereby influence phenotype. As
gene-environment interactions are key to the concept of
developmental programming, much attention has been di-
rected towards the potential role of epigenetic mechanisms
in mediating the effects of a suboptimal exposure of a fetus
in utero to permanent changes in its long-term metabolic
health including risk of T2DM and obesity. Epigenetics
provides an attractive mechanism to underlie the cellular
memory by which a suboptimally exposed cell during a
critical period of development stably affects gene expres-
sion following multiple rounds of cell division.

The potential for diet during pregnancy to permanently
alter the epigenotype and therefore adult phenotype and
disease susceptibility was first demonstrated 15 years ago
using the Agouti viable yellow (Avy) mouse (559). The Avy

allele is epigenetically sensitive as a result of a retrotrans-
poson insertion upstream of the Agouti gene. When the



Data from humans in relation to evidence for epigenetic
modifications contributing to the developmental origins of
T2DM and obesity are much more limited and are often
hindered by the lack of availability of metabolically relevant
tissues from living humans. The majority of studies have
therefore focused on clinically accessible tissues such as
white blood cells or umbilical cord. However, a major
goal has been to identify epigenetic changes in these tis-
sues that are reflective of epigenetic changes in tissues
such as adipose tissue, the brain, and the endocrine pan-
creas. Genome-wide methylation analysis of cord blood
cells demonstrated that intrauterine growth restriction in
humans was associated with altered methylation of the
HNF-� locus, again highlighting the potential impor-
tance of programming of transcription factors (132). Hu-
man studies have also demonstrated association between
patterns of early postnatal growth and epigenetic modi-
fications. Groom et al. (185) reported a link between
rapid postnatal growth and differential methylation of
the TACSTD2 locus, a gene associated with childhood
adiposity. Evidence for the effects of diet during preg-
nancy and epigenetic changes in the offspring in humans
is sparse, and most has come from studies of individuals
who were in utero during the Dutch Hunger Winter.
Initial studies of this cohort identified differential meth-
ylation of the Igf2 locus six decades after exposure to the
famine in utero (207), and a further five vulnerable loci
were identified in a subsequent study (514). Other human
studies have demonstrated the potential use of epigenetic
modifications as markers of future risk of metabolic dis-
ease. In two separate cohorts, Godfrey et al. (175) dem-
onstrated that methylation of the retinoid X receptor in
umbilical cord tissue correlated strongly with percent fat
mass later on in childhood and explained �25% of the
variation in adiposity.

In addition to studies showing associations between
changes in early patterns of growth and nutrition, there are
also a limited number of studies showing epigenetic varia-
tion in candidate genes associated with T2DM and obesity.
Small but significant differences in methylation of FTO (39),
insulin (568), and KCNQ1 (517) loci have all been shown to
correlate with disease risk. Furthermore, there is evidence that
lifestyle factors associated with changes in obesity risk can
alter promoter methylation of key genes in skeletal muscle
including PGC-1�, PDK4, and PPAR-� (33).

B. Hormonal Influences

As discussed above, a plethora of data from rodent and
human studies have suggested that changes in nutrition dur-
ing perinatal life have a significant impact on the develop-
ment of obesity and related diseases in later life. Hormones,
such as leptin, insulin, and ghrelin, are dynamically regu-
lated by nutritional and metabolic status and are therefore
major signals to the developing fetus and neonate of nutri-

ent availability (FIGURE 2). In addition, hormones produce a
multitude of effects on functions in the developing fetus and
neonate that are well outside the functions they serve in
later life. Thus the biological actions of several metabolic
hormones are different during neonatal versus adult ep-
ochs. For example, in sharp contrast to the potent effects of
leptin and ghrelin on feeding in adults, peripheral leptin or
ghrelin injections have no significant effects on milk intake
or body weight during the first 2–3 wk of postnatal life in
rats and mice (340, 404, 490). These observations suggest
that leptin and ghrelin might exert different functions dur-
ing neonatal life such as altering neural development. Early
observations by Bereiter and Jeanrenaud (40, 41) reported
structural defects in the obese ob/ob mice, including a re-
duction in soma size of cells in the VMN and dorsal motor
vagal nucleus neurons, as well as alterations in the dendritic
orientation of VMN and LHA neurons. Twenty years later,
Ahima and Flier (8) showed that the same mutant mice display
an immature pattern of expression of synaptic and glial pro-
teins. This pioneer work paved the way for subsequent re-
search on leptin in brain development and plasticity.

The availability of ob/ob mice and more modern neuroana-
tomical tools to study neural circuits allowed more detailed
studies on the role of leptin on hypothalamic development.
Axonal tracing of ARC neurons demonstrated that the lep-
tin deficiency permanently disrupts the development of pro-
jections from the ARC to each of its major targets, including
the PVN (61). Remarkably, peripheral leptin injection in
ob/ob neonates restores the density of ARC axons to a
density that was comparable to that of wild-type litter-
mates, but the treatment of adult ob/ob mice with leptin is
largely ineffective (61). Also, leptin restores normal brain
weight in ob/ob mice but only when the hormone is injected
during early life (494). These observations suggest that lep-
tin acts primarily during a restricted critical neonatal period
to exert its neurotrophic effects. Notably, obesogenic envi-
ronments, such as maternal obesity, diabetes, and postnatal
overnutrition, can cause hyperleptinemia throughout post-
natal life and impair central leptin sensitivity during critical
periods of hypothalamic development (62, 174, 250, 491).
Notably, this early leptin resistance is associated with a
disrupted development of ARC neural projections to the
PVN (62, 174, 250, 491). In contrast, maternal undernutri-
tion during pregnancy and lactation or the postnatal period
blunts the naturally occurring postnatal leptin surge and
also causes abnormal development of ARC projections (97,
118, 572), and daily leptin treatment during early postnatal
life in pups born to undernourished dams normalizes their
metabolic abnormalities (533). These findings show the im-
portance of neonatal leptin in life-long metabolic regulation
and raise the importance of early endocrine intervention in
metabolic (mal)programming.

More recent studies have also implicated ghrelin in the de-
velopment of metabolic systems. Ghrelin is one of the first
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major metabolic hormones to appear during development.
It is expressed in embryos as early as the morula stage and
continues to be expressed in the developing fetus and neo-
nate. During perinatal development, ghrelin is transiently
expressed in the pancreatic �-cells where it colocalizes with
glucagon (116). But ghrelin is also produced by the pancre-
atic �-cells (419). This transient expression of ghrelin ap-
pears to play a role in pancreas development. Newborn rats
exposed to ghrelin for 7 or 14 days had reduced pancreatic
weights, attenuated pancreatic DNA synthesis, and reduced
DNA content (119). The morphological effects of neonatal
ghrelin appear widespread because chronic neonatal ghre-
lin injections also reduce growth of the stomach, as evi-
denced by a decrease in gastric weight, DNA synthesis, and
DNA content. On the other hand, ghrelin injections in adult
animals increase pancreatic and gastric weight, DNA syn-
thesis, and DNA content (119, 542), indicating that ghrelin
can induce biphasic effects on gastric growth depending on
the age of exposure.

Ghrelin also exerts developmental effects on the brain. In
vitro incubation of hypothalamic and brain stem cells with
ghrelin induces proliferation with many of the resultant
newborn cells acquiring a neuronal and/or glial phenotype
(224, 575, 576). Insulin has also long been associated with
brain development. Consistent with a trophic role of insulin
in the developing hypothalamus, offspring of insulin-defi-
cient mothers display a reduced number of ARC neurons,
and this reduction of neuronal cell number is preventable by
the normalization of glycemia using pancreatic islet trans-
plantation (156). Moreover, hypoinsulinemic pups born to
protein-restricted dams display a reduction in the number
of astrocytes (411), while the offspring of gestationally di-
abetic mothers, which have increased insulin levels, have
increased numbers of astrocytes (409, 412). In addition to
influencing hypothalamic cell numbers, insulin can also influ-
ence hypothalamic neuronal connectivity. Pups born to insu-
lin-deficient dams display abnormally organized POMC and
NPY/AgRP neural projections that could result from the at-
tenuated responsiveness of hypothalamic neurons to the neu-
rotrophic actions of leptin during neonatal development
(491). Notably, intrahypothalamic insulin injections during
early postnatal life cause life-long metabolic dysregulation,
raising the importance of neonatal insulin in the developing
brain on life-long metabolic regulation (410, 412).

C. Rodent Models of Gene-Environment
Interactions

1. Mouse models

Although transgenic and knockout experiments are typi-
cally conducted in mice, a significant variability in adipos-
ity, DIO, and obesity-related diabetes exists among the
mouse strains commonly used in laboratory research (see
548 for a review). The inbred C57BL/6J (B6) strain is prob-

ably the most widely used strain to conduct transgenic and
knockout experiments, in part because of its susceptibility
to develop obesity on high-fat diets. C57BL/6J mice are not
obese on a standard chow, but when fed a high-fat diet they
develop hyperglycemia, hyperinsulinemia, and hyperlep-
tinemia (133, 505, 548). In contrast, some strains, such as
129/Sv and A/J mice, are almost totally resistant to obesity
and diabetes when fed a high-fat diet (503). Remarkably,
both 129/Sv and C57BL/6J mice eat an equal number of
calories when fed a high-fat diet (13), suggesting that
C57BL/6J have a higher feeding efficiency and gain greater
weight per calorie consumed. Even within the C57 mouse
strain there are significant differences among sub-strains in
response to the high-fat diet. Thus C57BL/6J mice fed a
high-fat diet exhibit a marked metabolic phenotype,
whereas C57BL/6KsJ mice only display a weak phenotype
(93). Furthermore, in some laboratories it has been noted
that C57BL/6J mice within the same colony exhibit a bi-
modal response to high-fat diet; half develop DIO, and half
are obesity-resistant (136). Given the fact that they all share
the identical genotype, this marked difference in metabolic
phenotypes when offered a high-fat diet suggests the pres-
ence of an as yet to be determined epigenetic influence.
Background genes also appear to play an important role in
determining the metabolic phenotype of mice with natu-
rally occurring mutations or mice that have been genetically
altered by introduction of transgenes. For example, ob/ob
and db/db mice on the C57BL/Ks background are obese and
develop severe diabetes and a marked hyperglycemia,
whereas ob/ob mice on the C57BL/6J background are obese
but only exhibit mild diabetes and hyperglycemia (92). Sim-
ilarly, mice with a double-heterozygous deletion of the in-
sulin receptor and insulin receptor substrate-1 become in-
sulin resistant and severely hyperinsulinemic on the
C57BL/6J background, but on the 129/Sv background these
double mutant mice only exhibit a mild hyperinsulinemia
(271). Together, these observations indicate that back-
ground genes in mice greatly influence the development of
obesity and obesity-related diseases, such as T2DM, in re-
sponse to either an obesogenic environment or genetic de-
fects.

2. Rat models

The selectively bred DIO and DR strains of rats have proven
to be a valuable model for studying the interactions of genes
with environment. These strains were derived from the out-
bred Charles River Sprague-Dawley rat. Sprague-Dawley
rats from this breeder have the fairly unique characteristic
of showing a wide variation in body weight and adipose
gain when placed on a relatively high-fat (31%), high-su-
crose (25%) diet, designated as a “high energy” (HE) diet
(296). Approximately half the rats placed on such a diet
overeat for 4–6 wk and become obese (296). The remaining
rats overeat for only a few days and gain no more weight
than controls fed a low-fat chow diet (299). Importantly,
these outbred rats have been selectively bred to produce
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DIO and DR strains which have maintained their distinctive
phenotypes for more than 50 generations. The obesity of
the DIO rat appears to have a genetic origin since breeding
DIO males with another obesity-resistant strain of rats
passes on this phenotype to the offspring of these crosses in
an apparently polygenic manner of transmission similar to
most human obesity (57, 298, 502). This model is an excel-
lent one for the study of human obesity since, like most
obese humans, it maintains its higher body weight and ad-
ipose set-points even when switched to a low-fat diet or
after being calorically restricted for many weeks (291, 302).
This defense of a higher body weight set-point is what oc-
curs in obese humans and is likely the reason for the high
recidivism rate in the medical treatment of obesity and the
extreme measures many previously obese individuals must
undertake to keep off lost weight (326, 448, 538, 557).

The DIO/DR model is extremely useful for the study of
gene-environment interactions associated with maternal
obesity and insulin resistance since dams can be fed the
same high-fat diet but only the DIO dams become obese and
insulin resistant during gestation and lactation (176, 177,
294, 300). This obesity of DIO dams is not accompanied by
an increase in offspring body weight unless such offspring
are also fed HE diet from weaning. As opposed to DIO
offspring, offspring of DR dams, whether the dams were
made obese with a highly palatable diet or stayed lean on
HE diet during gestation and lactation, gained no more
weight or adiposity than controls regardless of their
postweaning diets. However, maternal obesity, regardless
of genotype, was associated with enlargement of the VMN
and DMN and differentially affected the density of norepi-
nephrine and serotonin transporters in the PVN (294). On
the other hand, offspring of DIO dams, regardless of
whether their dams were lean or obese during gestation and
lactation, showed defective development of the �-melano-
cyte stimulating hormone (�-MSH, a catabolic peptide de-
rived from POMC) and AgRP pathways projections from
the ARC POMC and NPY/AgRP neurons to the PVN.
These defective projections appeared to be due to the inher-
ent leptin resistance of the DIO rat (176, 178, 295, 297,
299, 392), since leptin is required for normal development
of this pathway (62).

Although it is uncertain whether DIO pups are born with
inherent leptin resistance, it does appear in the first few days
of life (62), making this early postnatal period an important
focus of potential interventions that might alter later life
development of obesity. In fact, cross-fostering DR pups
from lean DR dams to obese, but not lean, DIO dams fed
HE diet causes them to become obese and insulin resistant
when they are fed HE diet as adults (176). This is associated



the predisposing factors, it remains challenging to identify
those individuals who are most at risk and the predisposing
factors that push them into a vicious cycle of obesity and
insulin resistance from which few can recover. Because or-
gans, particularly the brain, undergo the majority of their
development during the perinatal period, there is a pre-
mium on identifying at risk individuals and risk factors
during this critical period. Importantly, while most organs
undergo continuing change of structure and function
throughout life, the brain is much less plastic with regard to
changing the connections of critical neuronal pathways es-
tablished during critical periods of early development. The
problem is that, even if we could reliably identify such in-
dividuals and risk factors, we are a long way from knowing
how to alter the perinatal environment to prevent offspring
from being set on the path to near-permanent predisposi-
tion to obesity and diabetes.

Also, we understand even less about the factors that make
obesity, once it develops, a near-permanent condition in so
many individuals. Given our current state of knowledge,
there are some possible guidelines, although some of these
are based on animal research that might not apply to hu-
mans. First, several factors increase the probability of off-
spring obesity and/or diabetes. These include obesity in one
or both parents, gestational diabetes, intake of a high-fat,
calorically dense diet during pregnancy and lactation, ges-
tational undernutrition with postnatal overfeeding (“catch
up growth”), genetic mutations known to cause obesity in
affected individuals, and possibly some gene variants which
have a high association with obesity such as FTO. How-
ever, it is important to recognize that these latter gene vari-
ants are only associations, and we are a long way from
understanding the combinations of genes and the epigenetic
modifications of these and other genes that promote obe-
sity. Similarly, while research in animal models has identi-
fied several factors that appear to adversely alter the devel-
opment of neural pathways involved in the regulation of
energy and glucose homeostasis, it is unclear if these same
factors apply to humans and, if they do, the stage of gesta-
tional and postnatal development which is most at risk.
Finally, even if we could identify at risk individuals and
obesogenic factors, changing the perinatal environment is a
socioeconomic and cultural challenge for which we have so
far failed to find a practical solution in the vast majority of
at risk individuals. The hope would be that continued re-
search into the factors that predispose individuals to be-
come obese might identify those that lend themselves to
relatively simple, straightforward interventions.
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