
dx.doi.org/10.1016/j.aquatox.2012.05.005
http://www.sciencedirect.com/science/journal/0166445X
http://www.elsevier.com/locate/aquatox
mailto:xhkong@htu.cn
dx.doi.org/10.1016/j.aquatox.2012.05.005


1 ogy 12

b
e
2

o
i
m
l
w
i
A
a
t
f
2
S
t
m
d
s

unclear.   mercury
20 X. Kong et al. / Aquatic Toxicol

attery of biomarkers is more effective to assess the influence of
nvironmental pollutants (Cajaraville et al., 2000; Chevre et al.,
003; Dondero et al., 2006).

The increasing heavy metals in water can lead to serious effects
n fish embryos that are particularly sensitive to intoxication dur-

ng embryonic development (Jezierska et al., 2009). Waterborne
ercury can directly affect the hatching process of embryos and

arvae quality (Huang et al., 2010a,b). Therefore, high-quality water
ithout mercury disturbance plays a significant role in maintain-

ng the health of the embryos during embryonic development.
lthough mercury can penetrate the egg membrane and exert an
dverse effect on fish embryos (Devlin, 2006; Huang et al., 2010b),
oxic effects on larvae, fry, and juvenile fish have been the main
ocus of most previous studies (Berntssen et al., 2003; Huang et al.,
010a; Monteiro et al., 2010; Sastry and Gupta, 1978; Sastry and
harma, 1980). However, the responses of biochemical indices, par-
icularly phosphatase, lysozyme, and lipid peroxidation (LPO), to

ercury exposure in fish embryos have not yet been fully eluci-
ated; the biochemical mechanism used in coping with mercury
tress remains unclear. On the otheave the
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Fig. 3. Changes of LSZ activities in developmental embryos of C. auratus exposed
to  different mercury concentrations. All data are presented as means + standard
deviation (M + SD). Enzyme activity unit is U/mg Pr. Compared with the control,
“*” represents significant difference (p < 0.05) and “**” represents extremely signifi-
cant difference (p < 0.01). Compared with the 24 h exposure, “†” refers to significant
difference (p < 0.05) and “††” refers to extremely significant difference (p < 0.01). For
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.3. LSZ activity responses to mercury exposure in embryos

The changes in LSZ activity in C. auratus embryos at various mer-
ury concentrations indicated similar correlations with embryonic
evelopment to some extent (Fig. 3). LSZ activities at different con-
entrations during the same exposure time showed no significant
ffects on fish embryos at 24 and 48 h compared with the con-
rol (p > 0.05). A significant increase in LSZ activity was  observed
t 72 and 96 h exposures only at 10 �g/L (p < 0.01 or p < 0.05). On
he other hand, LSZ activities significantly increased at 120 h at 5
nd 10 �g/L (p < 0.05). LSZ activities exhibited gradually decreas-
ng trend with embryonic development during the time-dependent
ffects at 0, 0.2, and 1 �g/L up until 96 h. At 96 h, LSZ activity reached
he minimum; afterward, it increased. LSZ activities significantly
ecreased at 96 h (p < 0.05) at 0, 0.2, and 1 �g/L compared with
4 h exposure. However, LSZ activities showed no significant dif-
erence at 5 and 10 �g/L (p > 0.05). Moreover, LSZ activities at  1 13Tm

expo6 Tm219626T6 Tm219
dif-
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ontinuously increased at 5 and 10 �g/L at 120 h exposure, indicat-
ng a significantly higher amount (p < 0.01); however, no significant
ifference occurred at 0.2 and 1 �g/L (p > 0.05). MDA  content in
he control significantly increased only at 120 h compared with
he 24 h exposure (p < 0.01). MDA  content in the exposure groups
as remarkably higher at 96 and 120 h at 
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6 h, suggesting that the increased CAT activity can minimize MDA
roduction and reduce the degree of oxidative stress that resulted
rom ROS. On the other hand, the enhanced synthesis of metabolic
nzymes in fish embryo can improve the ability to maintain physi-
logical homeostasis and ensure normal embryonic development.
owever, MDA  accumulation was not reduced even after 96 h when
ercury concentration was beyond the adjust critical value, partic-

larly at 5 and 10 �g/L. Therefore, fish embryos cannot cope with
xygen stress caused by exposure to higher mercury concentration,
hereby resulting in their abortion. Thus, a higher number of dead
mbryos were observed at higher Hg2+ concentrations, as described
y Wang (2011).

.3. Responses of LSZ activities to mercury exposure in embryos

The innate immunity in fish plays an important role in main-
aining the immune defense system to prevent bacterial infections.
he corresponding immune levels of fish are modulated to cope
ith adverse effects of pollution when they are subjected to heavy
etal contaminants (Zelikoff, 1993). Therefore, investigating fish

mmunotoxicity under mercury exposure is important. One of
he important innate immunity factors in fish is LSZ, which cov-
rs a wide antibacterial spectrum and destroys the peptidoglycan
ayer of the cell wall of predominant Gram-positive bacteria and
ome Gram-negative bacteria (Skouras et al., 2003). LSZ activity
s regulated to improve the immune defense when the increasing
athogenic bacteria and other various stress factors attack the fish.

In this study, LSZ activities in fish embryos significantly
ncreased at 72, 96, and 120 h at 10 �g/L compared with the control.
SZ activities increased only at 120 h at 5 �g/L. It was indicated that
SZ activity can be induced only at higher Hg2+ concentrations with
onger exposure time. Therefore, the responses of LSZ are not sensi-
ive to mercury exposure in fish embryos, which may  be attributed
o the weak ability to synthesize LSZ in the embryos. However,
SZ can also be stimulated to adjust enzyme activity when mer-
ury concentration further increases. Wang (2011) has addressed
hat LSZ activity can be induced to improve the weakened immu-
ity defense under a certain mercury stress, which agrees with
he previous proposal that LSZ activity can be induced by mer-
ury exposure (Low and Sin, 1998). For example, LSZ activity can
e induced in the kidney of blue gourami (Trichogaster trichopterus)
ith mercury exposure at 90 �g/L for 2 weeks (Low and Sin, 1998).
oreover, LSZ activity is also enhanced in fish treated by a rel-

tively low dosage of mercury (Low and Sin, 1998). In addition,
SZ activity can be significantly induced in the serum and kidney
f tilapia (Oreochromis aureus)  exposed to 0.6 mg/L mercury solu-
ion (Low and Sin, 1995a,b). Thus, LSZ activity can be induced by
xposure to mercury at specific concentration. LSZ, as an impor-
ant immunologic factor, plays an essential role in immune defense;
he antibiotic activity can be modulated by self-adjustment under
pecific mercury exposure.

In the present study, the gradually decreased LSZ activities
ere observed up to 96 h (similarly observed in the control) as

he exposure time was extended. Therefore, the weakening abil-
ty to synthesize LSZ is not sufficient to complement the gradually
onsumed LSZ, as described by Kong et al. (2011).  However, LSZ
ctivities in fish embryos are obviously higher at 120 h than at 96 h,
mplying that the synthesizing ability of LSZ can be enhanced after

 specific period of embryonic development.

. Conclusions
The activities of metabolic enzymes in fish embryos were
ffected by exposure to mercury in concentration-dependent and
ime-dependent manners despite the varying response patterns of
0– 121 (2012) 119– 125

different metabolic enzymes to mercury. The activities of ACP and
AKP were sensitively induced under mercury exposure, which is
mainly used in enhancing the reactions of dephosphorylation. LSZ
activity showed minimal responses to mercury exposure; however,
LSZ activity can be modulated at higher concentration and longer
time. The declined CAT activity induced by mercury damage can
result in MDA  accumulation, thereby causing LPO. At the same time,
the strong oxidative stress occurred at higher mercury concentra-
tion. At the higher mercury concentrations, the activities of ACP,
AKP, and CAT, as well as MDA  content can be used as biomark-
ers in evaluating the impact of mercury exposure on C. auratus
embryonic development and potential ecological risk on larval
health. Moreover, the activities of ACP, AKP, and LSZ in fish embryos
were enhanced after a specific period of embryonic development.
The biological effects of mercury exposure on developmental fish
embryo are complicated and may  vary in different fish from var-
ious niches. Therefore, further studies are encouraged to obtain
additional evidence that would support the proposed ideas in this
study and to better understand the physiological and biochemi-
cal regulatory mechanism under mercury exposure. Studying gene
regulation of metabolic enzymes is also necessary to illustrate the
biological effects of mercury exposure on fish embryo at a molec-
ular level.
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