See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/295397746

Oat β-glucan depresses SGLT1 and GLUT2 mediated glucose transport in intestinal epithelial cells (IEC-6)

Art Art

•

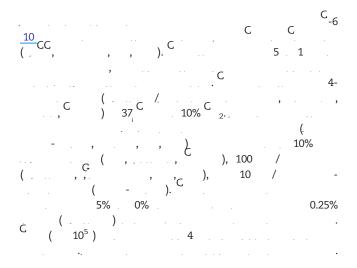
Original Research

Oat β -glucan depresses SGLT1- and GLUT2mediated glucose transport in intestinal epithelial cells (IEC-6)[%]

Nazanin N. Abbasi^a, Peter P. Purslow^b, Susan M. Tosh^c, Marica Bakovic^{d,*}

Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1

Departamento de Technología y Calidad de los Alimentos, Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina Food Research Centre, Agriculture and Agri-Food, Guelph, ON, Canada N1G 5C9


Department Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1

C	. С .
Article history: 26 2015 10 2016 16 2016	β
Keywords: G 'C -6 β-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
μ- 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1. Introduction	2. C
 ☆ C * Corresponding author. 24 4120 53764 +1 51 763 5 02. 	, , , , , , , , , , , , , , , , , , ,

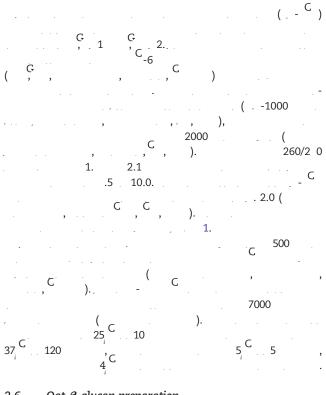
 β^{-6} , β^{-} ,

2. Methods and materials

2.1. Cell culture procedures

2.2. Experimental design

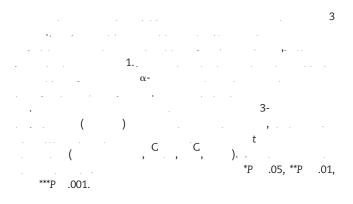
2- N-(7--2-G , 1 -1,3-G,). -2-(2--4-G 2 (10-60) (0-25 . /). . β-/) (ββ-(4, 6, . . / β-) 25 β-. /

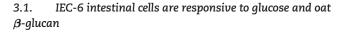

2.3. Glucose starvation procedure

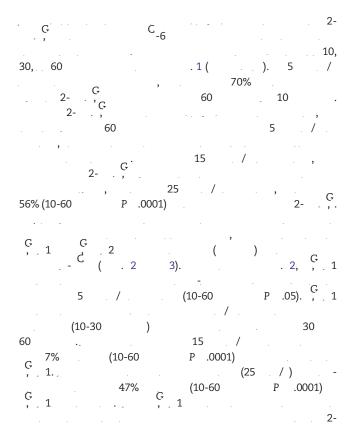
2.4. Measurement of glucose uptake

2- ^G , _G
$\begin{array}{c} 11 \\ 12 \\ 2^{-} \\ C \\ 7.4 \\ 25 \\ 2^{-} \\ 2^{-} \\ 13 \\ 2^{-} \\ 2$
15, 25 / 2- , 100 μ
C 100 μ 2, 0-25 / 0, 10, 30, 60 1 C (1% ,40 / C , 20 / 7.4) 10 C 130 & (, C).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
, 1 μ / 3325 . 50 μ 3325 C 350- 460-

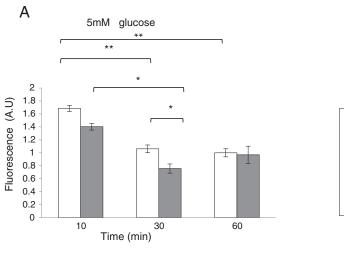
() <u>12</u>. 2- , G


2.5. Measurement of glucose transporters SGLT1 and GLUT2 by real-time polymerase chain reaction


2.6. Oat β -glucan preparation


C β	C
5 0000 / <u>β</u> -	β-
	3- ,100 2 β-
β	

2.7. Statistical analyses



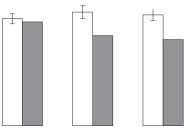

3. Results

Table 1 – List of primers used in quantification of glucose transporter expression					
	G ,	$(5' \rightarrow 3')$			
β-Actin	031144	2 2 9 202 9 9 9 92 92' 299 ' 99' 209 2 '			
Glut2	012 7 .2	ح ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت ت			
SGLT1	013033.2	9 99 2 992 205 9 9 ' ' 5 9 6 29202 9' '			

G . 1	β- (P .0001). ^G , 2
G, 1	2- , ^G , (_C , 1).
β- (P.0004.2). , 1. β- ,	(. 1-3)
G 2	β- G (2- G
15 / ,, 2 % (P .05 .3). (25 /) , 2 3% (10-60 P .05) , 1 , 2	β^{-} , $\stackrel{G}{,}$, 1 , $\stackrel{G}{,}$, 2 , $(P .0001)$, $(2^{-}$, $\stackrel{G}{,}$, $\frac{G}{,}$, 1 , $\stackrel{G}{,}$, $2), 3$

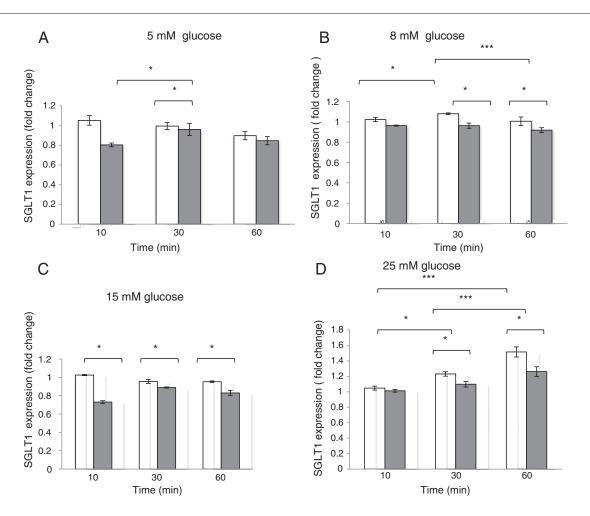
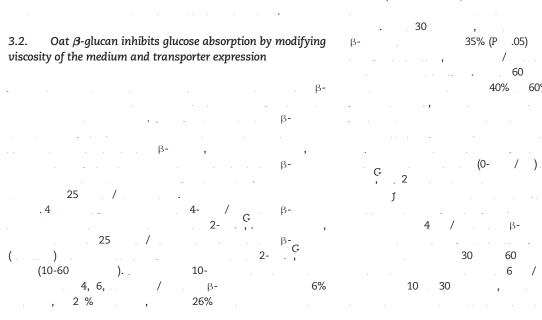
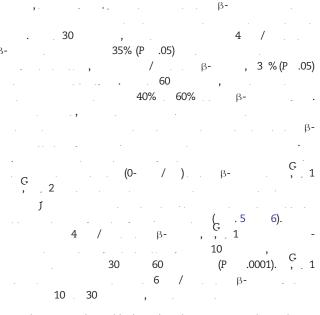




Fig. 2 - Regulation of SGLT1 transporter by glucose and oat β-glucan. IEC-6 cells were exposed to 5 mmol/L (A), 8 mmol/L (B), 15 mmol/L (C), or 25 mmol/L (D) glucose with (gray bars) or without (white bars) oat β-glucan (8 mg/mL). The cells were exposed to glucose and/or β-glucan (8 mg/mL) for a period of 10, 30, and 60 minutes. The SGLT1 mRNA expression is normalized relative to β -actin and presented as a fold change under various conditions. The values are presented as means \pm SE of triplicates, each repeated 3 times. Differences are judged to be significant at *P < .05, **P < .01, and ***P < .001 (2- and 3way ANOVA followed by Student unpaired t test) compared with respective control groups.

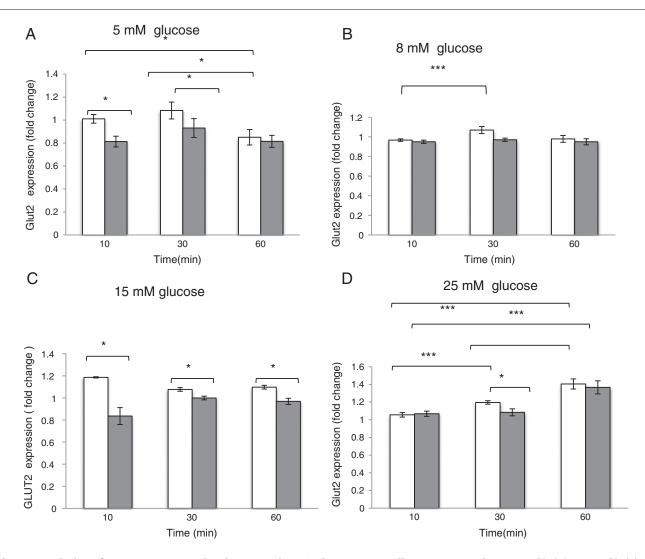


Fig. 3 – Regulation of GLUT2 transporter by glucose and oat β -glucan. IEC-6 cells were exposed to 5 mmol/L (A), 8 mmol/L (B), 15 mmol/L (C), or 25 mmol/L (D) glucose with (gray bars) or without (white bars) oat β -glucan (8 mg/mL). The cells were exposed to glucose and/or β -glucan for a period of 10, 30, and 60 minutes. The SGLT1 mRNA expression is normalized relative to β -actin and presented as a relative fold change under different conditions. The values are presented as means ± SE of triplicates, each repeated 3 times. Differences are judged to be significant at *P < .05, **P < .01, and ***P < .001(2- and 3-way ANOVA followed by Student unpaired t test) compared with respective control groups.

Table 2–Data analysis for the effects of glucose on glucose transport in IEC-6 cells						
		, P.	-			
	2- ,	G , 1	Ģ , 2			
C G	.0001 .01 1	.0004 .0001 .0003	.0001 .0001			
`Ğ *	.0001	.0001	.0001			
G,) P,.05	(^G , 1	G 2) ()	(P .05) (2-			

G	. (/ 25%). 30	β- 60	, .	,		5).
, 2 (· · · ·	· , 		6		/	,
6%	11%,	. (. 6).	60		, ,	. 2
β -	G 2			. 4	_	/	
	4% (P	4) .0001)	· / 10		β-)	
	30	60	(P	.0001	. 6).		
		3	B	, .		. 3-	
G , 1 (I	P .0071),	β - ,	2 (P 2-	.015) Ç	(P	(P .000 .0007)) 3), β-

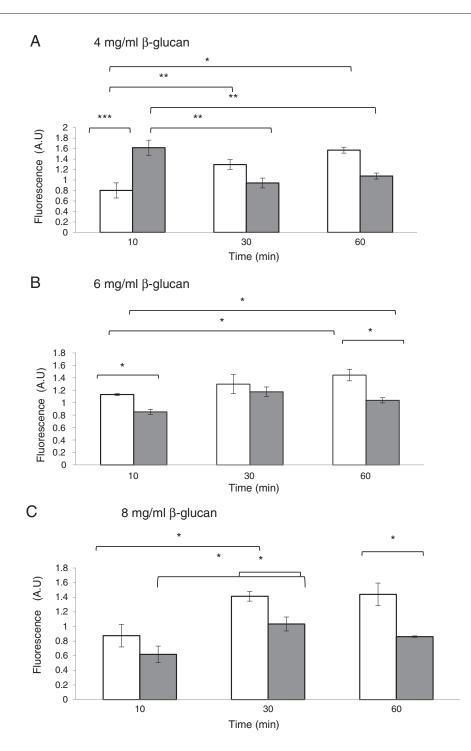


Fig. 4 – Effect of oat β -glucan viscosity on glucose uptake. The cells were exposed to constant glucose (25 mmol/L) and various media viscosities of 4 mg/mL (A), 6 mg/mL (B), and 8 mg/mL (C) of oat β -glucan. Glucose uptake was monitored by 2-NBDG fluorescence at different time intervals (10-60 minutes) after treatments. The white bars represent glucose-only treatments (nonviscous control), and gray bars represent glucose + oat β -glucan treatments (different viscosities). Data are reported as means ± SE of triplicates, each repeated 3 times. 2-NBDG results are presented as a relative fold change as described in Methods and materials. Differences are judged to be significant at *P < .05, **P < .01, and ***P < .001 (2- and 3-way ANOVA followed by Student unpaired t test) compared with respective control groups.

G , 1	G, 2	(P .0001)	3		· · · · · ·	β-
• *	" 2- G (P .015),	(P .(0002) G 2 , 2	.001).	(P.047) G. G.	2- 2 (P

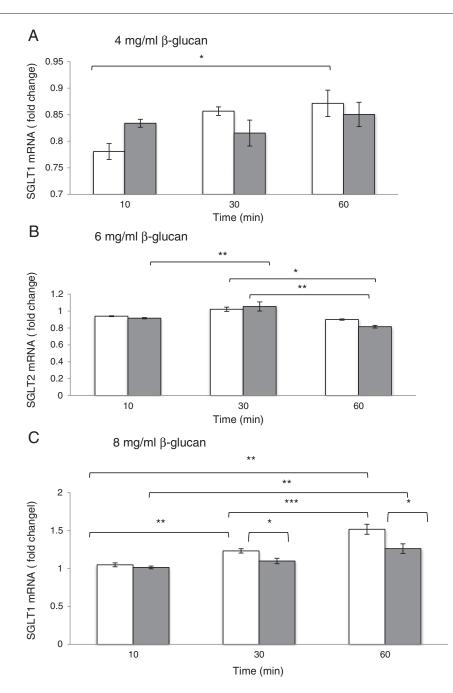


Fig. 5 – Effect of viscosity of oat β -glucan on SGLT1 transporter expression. IEC-6 cell were exposed to constant glucose (25 mmol/L) and various media viscosities of 4 mg/mL (A), 6 mg/mL (B), and 8 mg/mL (C) oat β -glucan for a period of 10, 30, and 60 minutes. The white bars represent glucose-only controls, and gray bars represent glucose + oat β -glucan treatments (different viscosities). Data are shown as a relative fold change in SGLT1 mRNA levels as described in Methods and materials. The values are presented as means ± SE of triplicates, each repeated 3 times. Differences are judged to be significant at *P < .05, **P < .01, and ***P < .001 (2- and 3-way ANOVA followed by Student unpaired t test) compared with respective control groups.

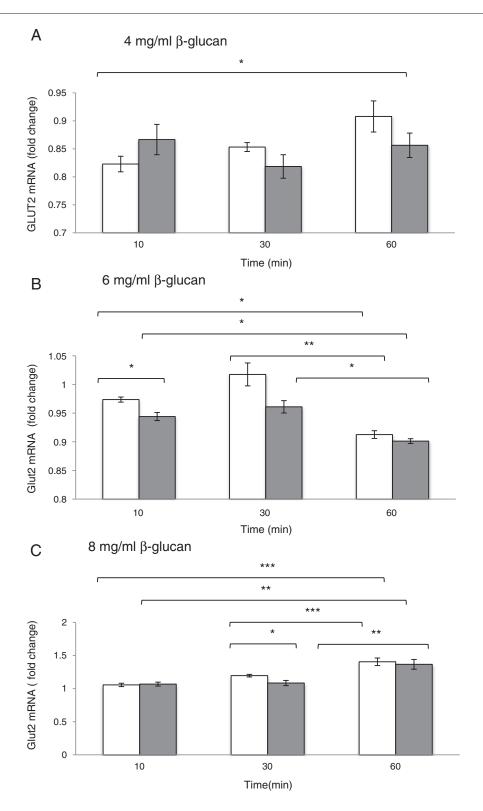


Fig. 6 – Effect of viscosity of oat β -glucan on GLUT2 transporter expression. IEC-6 cells were exposed to constant glucose (25 mmol/L) and various media viscosities of 4 mg/mL (A), 6 mg/mL (B), and 8 mg/mL (C) oat β -glucan for a period of 10, 30, and 60 minutes. The white bars represent glucose-only controls, and gray bars represent glucose + oat β -glucan treatments (different viscosities). Data are shown as a relative fold change in GLUT2 mRNA as described in Methods and materials. The values are presented as means ± SE of triplicates, each repeated 3 times. Differences are judged to be significant at *P < .05, **P < .01, and ***P < .001 (2- and 3-way ANOVA followed by Student unpaired t test) compared with respective control groups.

27

Table 3 – Data analysis for the effects of oat β-glucan on glucose transport in IEC-6 cells						
		, P.				
	2- , Ģ	G , 1	G , 2			
	.0003	.0071	.015			
β-,		.0001	.0001			
	.0007	.0001	.0001			
*β-	.0105	.0475	.007			
* C *	.0002		.015			
β-, *	.04 7	.0001	.0001			
- .		β-				
()					
	(P .05)					
· · ·	. P .05 .		().			

β-<u>13</u>. ^{...}C-6 β-13,15 . **,** . . **, .** . - - - -, ··· · · -2 · · · · С . . . , С . -2 16. . . , 450-3 (^С 3) С. с₋₆ 17. ^с-6 <u> </u>ċ -6 , (5 . /), (10), 25 25 . / . , (60). . G 3. , 1 , 3. ^G, G, 2 G <u>,20</u> . G , 1 *,* 2 • . 1. . 21 J G , 1, Ģ, . 2 Ģ 2 22–2 G, 2

Ġ 2. . . . 23 J., с₋₆ G 1 G , 1, · · · · G , 2. G 25 / . . . 3 % Ģ , 2 25. β-• • β-. (3 %-5 %) β-,, β-G G , 1 2 . . , с₋₆ . β-С 30. -2 , -2 Ċ_-6 -2 с₋₆. 31. ſ ۰. с₋₆ C__6 С -2 β-13. 14,15 . ββ-Ģ 1, **,**

· ·			32,33
		-	
	_ 31.		Ç , 1-
G , 1		<u>34</u> .	Ģ 2
	G G ,	. 2	•
β-	• -		
	,		β-
 . . .	β-	, , , , , , , , , , , , , , , , , , ,	. •, .
, .			· · · · · ·
_ , _		C	,
. β - .			- · , ·
		* • • • •	
G 2			
, .	G , 2	2	
3.	G , 2		j <u>35</u>
	· .		
JJ G 3.		· · · · · · ,	<u>26</u>
G , 2	C.		
,	С. С. , 2		
	, <u>,</u> ∠ .		
·			,
. β - .		•	$c^{-2} c_{\beta}^{-1}$
,			Ğ, , 2. β-
	G 26	• • •	β-
	, 2		,
-		· • • · ·	
		. •.	· · ·) · · · ·
. β	÷		· · · · ·
	, <u>.</u> .		• · · · ·

Author contributions

Acknowledgment

С

1			C					
		• • •	C.	2012 35 11–63.		• •	 /10.	
	2337/	12- 011.						

- 3 1 , 2 Ĝ, 1 , , **,** . , ۰. 2014 77. 11 /10.1371/j ç<mark>00</mark> 77. C 4 , , ,
- $5 \frac{1}{2} \frac{7}{2} \frac{673}{673} \frac{0}{2} \frac{1}{2} \frac{1}{2} \frac{7}{6} \frac{673}{7} \frac{0}{2} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}$

- <u>31- // . . /10.1021/j 01271 .</u>
- <u>2013 67 310–7. // . . /10.</u> <u>103 / 1 .2013.25.</u> G C C
- β-C 2010
- 11 _____, ____, ____ ______2007 2 753–62. // . . . /10.103 / _____2007.76.
- 12 _____, ___, ___, ___, ___, ___,

- _____β-____
- 2000
 41
 -23.
 //
 .
 /10.

 1017/
 00071145000011
 5.

 16
 , .
 , .
 , .
 , .
- C 2007 26 63 -44.

- $\begin{array}{c} 17 \\ C \\ 17 \\ 1016/J \\ 1016/J \\ 2001 2 64 -6 \end{array}, \begin{array}{c} C \\ 101 \\ 1016/J \\ 1016/$
- 1