

Contents lists available at SciVerse ScienceDirect

Ş

§_#

s. a_As- a_

A

4

a.

₿

a

ŝ

В

. T

448 55

4

5 5

5a_#

UV 🛿

4

6.

a.

a_4

a_4

journal homepage: www.elsevier.com/locate/matlet

S ₽ ₽ ₽ as B - 9 ٤. **a**_ **a**_ ş ş ₿ ₿ 8 a∦ ∯ 4 ŝ L, L **4**, *, Q D G *,∫ ₄__₽, . a Ella, Ha Ella Klaj la

. .

School of Chemistry and Chemical Engineering, Engineering Technology Research Center of Motive Power and Key Materials of Henan Province, Henan Normal University, Xinxiang 453007, PR China

a_#s a_#

A

<u>H____</u>H

. F

ą.

£,

. Ta_4s- a

4

UV

ARTICLE INFO

ABSTRACT

. \$

ब्द्ध्ध ब्_ध

a_Ba_B s

Н

Ø

ş

6

 Article history:

 R
 .26 Q
 2012

 A
 ...
 ...
 ...

 B
 ...
 ...
 ...

 B
 ...

1. Introduction

С A **4**. И A ₽ A 12 " 6 Τ. ₿ 5 A 26 a____8_a__# Ø . H a_4 s. 4 4 As a 8 Щ., a 4 4 8 A sa a. 8 As Ba_B a 4 3,4. s a. AARR SS. D <u>₽</u>s **a_**4 A A AR SA 4 TO₂ \$ ş ş **a_**₿ SA BS AABB S 8 4 **a**_ a S H C. S, 5,6.R s, e.g. 5 4 H 4 ş - 5 8 TO₂ 7 10. As 4 <u>\$</u>, <u></u> a_# a_# 3.5 3.7 V S. 3.7 3.8 V A <u>4</u>. 4 11. R S_B_B_B_B_B_B 4 4 • **4_**# s _____Bs _B___B___B___B_ \$ AAR ASR S-A И ŝ **S**_ a_₿ \$ 4 **a**s_₿ 6 ą. **4 H** H 4 **a**_

5**4_**___ A A A 45 A Н a. # # 4 a S Ħ A 4 Ľ٩. A A <u>1</u> 6 4-<u>8</u>. ŝ a (SSA) _⊈ 160 °C A 8 a. 6. Дs . T. S 6 ŝ a, a_a8_8 **a_**# AARA A. R B (R. B).

<u>s_4</u> s

A as A

4 5

s.a

a_4

И

6

H

© 2013 E s

a.

via A. A.

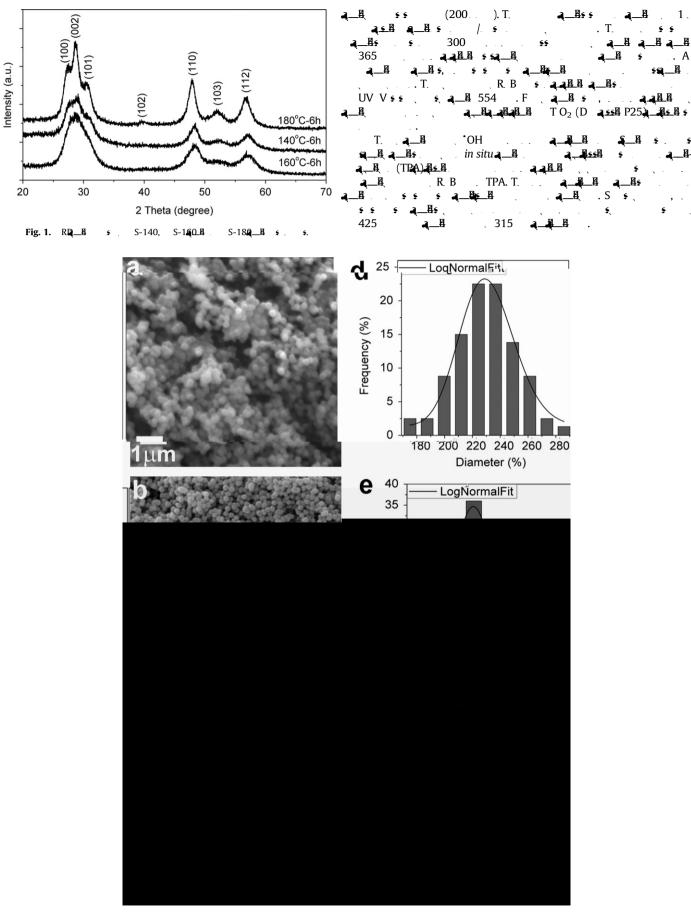
a_# s

4

4 5

4-

a_4a_4 160 °C.


4 \$

B.V. A

2. Materials and methods

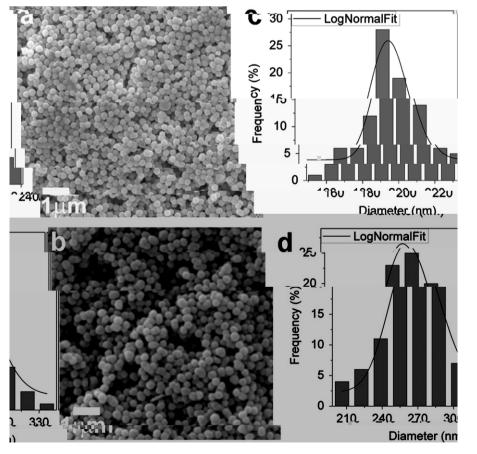
a A a a A A S_____ F $(C_6H_9N_3Q_2)$ 1:1 M___ s, . s . <u>s</u> . **4**.4 **a_**# 2. 55 T. <u>_</u># ___# AsA Eq. . S ٤., 55 **__**__ a_8a_8 s **₿**T <u>4 4 4</u> 2 as 🛿 a_ 4 . **a_**₄ **a_**₄ 160 °C 6... ् ब______ 🛯 ६ . **....**₿ a_85 a_8 a___4 a___4 30 °C. F **a_**₿ \$ a___4 140a°C.4 180 °C. T. ş. S-160_4 S-140, S-18Q_____ 4 <u>4</u>5 . **A**£ ą. \$, 4 <u></u> a_4s ŝ đ. , . **4**_ 12 4 . 24. **a_**# ą_<u>₿</u> <u>\$</u>. ş

5**.**____ Τ. as H (SEM). T. RDa_4 ₽ С Koa 📲 $(\lambda = 1.5406 \text{ A})$. T. UV as & s 4 H -4-6 . T. SSA S 6 6 8 6 a A B Ba_ 4 Т (BET) 4-Е **a**_ <u>A</u> 5

S-184 5. 5.

s'

4-


3. Results and discussion

a 1 27.18, 28.64, 30.50, 39.62, 47.75, 52 **a 2 b** 56.53 . (100), (002), (101), (102), (110), (10**3)** 🗄 🛛 (112) 🖺 🖇 . a__4s (JCPDF 36-1450), s . . I s. a_#, . .a_#

- a_B_s_s_T_s_a_B_sa_B_. s <u>a Asasa</u>s **.**₽
- S-140, S-160 图
 S-180 图
 第
 4
 第
 3
 第
 3
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5 a_4 s. s.
- **₫_**₿___, **₹** 160 °C s.a. 🗄 . . .

ः ः ःत्व_सः व्य_सः ् ः व_सः व्यासः ः ः व्यूसः व्यूमिः **4**___ F IN

- . <u>§ 4 5 5 (F a 44), 4</u> UV 👀 🚛 🖪
 Image: Second Second
- **₽_₽**\$..\$...**₽**\$... a___4 R.B a 4 8 5 . F UV a_4 140 (28.8%), S-180 (44.1%) A P25 (75.7%). T.
- ã__₿
 - ø
 A
 Ba
 <t a_4 s,

160 °C.

 a_Bs
 in situ
 a_BsSB
 4,15.F
 s
 s
 4. Conclusions

 (F.4.),
 a_B
 a_B
 a_B
 s
 s

 (PL)
 s
 s
 B
 a_B
 s
 s

 s
 (PL)
 s
 s
 B
 a_B
 s
 s

 s
 (PL)
 s
 s
 B
 a<B</td>
 s
 s
 s

 s
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <t ___B___S-180a___B__s__s, ___s __B___a__BB4s____s__s_s, . A_A R.B <u>ş</u> ş ş . . . F. s. , . ą___ a<u>R</u>, a<u>R</u>, s, <u>a</u><u>R</u>, <u>a</u><u>R</u> 5**4_**# 5 _______ इ. इ. इ. इ. . **4_**_______ ş

(E_..(4)). **C** . C(z - z + 1 + z)(1)

$$S+. \rightarrow S(e_{cb}^{-}+h_{vb}^{+})$$
(1)

 $h_{\nu b}^+ + H_2 O \rightarrow H^+ + OH$ (2)

 $h_{vh}^+ + OH^- \rightarrow OH$ (3)

•OH+2 → 2 • • • • (4)

s 🚬 ss I.s.**ą_**₽, -, **£** . **\$** . ब्रह्म व्रह्म अन्त्र में वि - व्रह्म OH, . - व्रह्म व्रह्म के व्र <u>क म</u> कर्म a__B S_4 -4 ş . . . UV , <u>\$</u> \$ **. .**[4] ą__<u>₿</u> . . **.**<u>.</u><u>.</u> <u>4</u> s. 4_

Ackno ledgments

References

- 1 a, MB. N, aB. B. al. B. P. a. MB. B. P. a. B. Ba B. MK. E. E. a. SB. 2005;61:105 13. 2 Va_BAKaDBs. RR, B. a. B. P. J. E. a. Mar. B. 2012;93:154 68. 8326668.106(, s. s.)-68D (T)-32.2(,).J/20a. B. s. :2.8127-338.1)1.a. TB(D (,)-32.8(4262)

- 7 C. D. at B. F. R. G. L. D. M. a. B. , a. B. a. NB as B. 2010;2:2062 4.
 8 G. a. B. La B. L. S. a. EB. Q. B. La B. a. MB. L. 2012;74:26 9.
 9 G. a. B. Ja TB. , D. F. B. K. a. MB. , a. B. C. s. E. C. 2012;14:1185 8.
 10 L. , H. J. T. C. R. L. J. J. MB. C. 2011;21:16621 7.
 11 M. a. a. B. A. A. A. B. R. S. B. B. M. ACS A. a. MB. I. a. B. 2010;2:1817 23.

- 12 a_B, Ha_B, Q.C. C 2010;46:8941 3. 13 a_B, a_B, Ha_B, Ha_HB, a GC, a_B, JQ, JA, C. S, 2004;126:6874 5.
- 14 Ізд. В. К., F Š. В. Адавана Таная. К. Е. ... С 2000;2:207 10.
- 15 a 4 , S a Clasa 4 FN. J A C. S 2008;130:12566 7.