ΕE

Seasonal variations of ATPase activity and antioxidant defenses in gills of the mud crab Scylla serrata (Crustacea, Decapoda)

Xianghui Kong · Guizhong Wang · Shaojing Li

E

200 ا م م م ا م 200

Abstract ... MA the second should be the state of the second s يعد المجمع المعاد المعاد المحمد الدار المحمد المالية المحمد المحالية المحمد المحالية المحمد المحمد المحمد المح f_{ij} , σ at i , i , i , i , f_{ij} , f_{ij} , f_{ij} , f_{ij} , σ fine at the sector of the sector of a sector of the sector and if the second produces in the second $(\cdot,\mathbf{f}_1,\ldots,\cdot,\cdot,\cdot_{i_1},\ldots,\cdot_{i_l},\ldots,\cdot_{i_l},\mathbf{f}_{i_l},\mathbf{f}_{i_l},\mathbf{f}_{i_l},\mathbf{f}_{i_l},\ldots,\cdot,\cdot,\mathbf{f}_{i_l},\mathbf{f}_{i_l},\ldots,\mathbf{$ - - - - for the man for the - $= \frac{1}{1 + 1} \left[\frac{1}{1 + 1} + \frac{1}{1 + 1$ ····· $\mathbf{M} \qquad \mathbf{M} \qquad$ 10\$201. If \mathbf{j} is a state of \mathbf{j} is the second state of t $[1] \sim \sim \dots \sim \sim \sim \cdots) \cdots (1 \sim \dots \sim \dots \sim \dots \sim 1$

""". K. ".

.K. (&). . .

 $= \mathbf{K}^{\mathbf{M}} + \cdots + \mathbf{K}^{\mathbf{M}} + \mathbf{M}^{\mathbf{M}} + \mathbf{K}^{\mathbf{M}} + \mathbf{K}^{\mathbf$

. K. 1

is a start a start and a start a 1. I dan and the second of the - مجموع المراجع the second secon $\frac{1}{1} = \frac{1}{1} = \frac{1}$ and the second s $f_{\rm m} = f_{\rm m} + f_{m$ and a for the start of the second start of the $\mathbf{m}'_{1}\cdots \mathbf{r}'_{n} \mathbf{r}'_{n}\cdots \mathbf{r}'_{n} \mathbf{f}'_{n}\cdots \mathbf{r}'_{n} \mathbf{f}'_{n}\cdots \mathbf{f}'_{n} \mathbf{r}'_{n}\cdots \mathbf{f}'_{n}\cdots \mathbf{r}'_{n} \mathbf{r}'_{n}\cdots \mathbf{r}'_$ an and the second property and the second

Abbreviations

```
and the contract of a contract
and the second
In the second second
· • / · · ·
I a a a a a a a a a a a a a
ill and the ward
and a first
```

Introduction

(1,1), (200), (1,1), (and in the second se Marian Maria Production and the states - . ا. محمر معرب . . . محمر ا. . . . المعير المو المود _{الم}ار المربع الم المحمر أ. and the second $(K_{1}, i_{1}, ..., 200, ..., ...)$

 $\mathbf{f}_{\mathbf{M}} = \mathbf{f}_{\mathbf{M}} =$

The second secon $\begin{array}{c} \mathbf{M} \\ \mathbf$ $\mathbf{j} \leftarrow \mathbf{k} \leftarrow$ 2+ , , ²⁺ where we want the first of the second state of $\mathbf{f} \to \mathbf{f} \to$ the second of the second se K^+ , K^+ , M^- , 1 2 million and a million of the second). $\mathbf{M} = \mathbf{M}^{\dagger} \mathbf{M}^{\dagger}$ 1 $(\mathbf{K}, \mathbf{M}, \mathbf{M}, \mathbf{K}, \mathbf{M}, \mathbf{M$ $\mathbf{f}_{1} = \mathbf{f}_{1} + \mathbf{f}_{2} + \mathbf{f}_{1} + \mathbf{f}_{2} + \mathbf{f}_{1} + \mathbf{f}_{2} + \mathbf{f}_{1} + \mathbf{f}_{2} + \mathbf{f}_{2}$ and an and the second and the second se many to prove the second second provides a firm of and the second s - من المراجع المراجع المراجع الم المراجع المراجع المراجع الم المراجع الم المراجع المراجع المراجع الم $\int \mathbf{f} \cdot \mathbf{f}$

and a second a second

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

f A, where we do not a first a distribution of the second se and the first of the second $\cdots \mathbf{j} = [1, 1] = [1, 2] = [1, 3] = [$) and an and a state of the state $\mathbf{f}_{\mathbf{r}} = \left\{ \begin{array}{c} \mathbf{f}_{\mathbf{r}} \\ \mathbf{f}_{$. المح الذي بالماية بعديد بالمدالمة المحتار المحتال المالية المحتال المالية f grant but in a start of a sign of a strain $\sum_{i=1}^{n} (1, i) = (1, i)$ محمد المعن من المحمد المحمد المان المان المان المحمد المداخم المالية المحمد الماني المحمد الم **f** and the second $1 \quad 1 \neq \dots = 1$).

and the second mention of the second s $(J_{1}, \ldots, J_{n}, 1), \mathcal{A}, \mathcal{A},$ 1.1.1.1.1.1.1.2001 K 1.1.1.1.1.2001, 2001, 2001, 1), where the second wave and so the second s $\frac{1}{2} \left(\frac{1}{2} + \frac{1$ $\mathbf{f} = \{1, \dots, n\}, \{1$ $\begin{array}{c} \mathbf{m} \\ \mathbf{$ we also of film of the second states and the $\begin{array}{c} & \begin{array}{c} & & \\ & &$ $1 \quad 1 , \dots, 1 \quad \dots, 1 \quad 2 , \dots, \dots, 1 \quad \dots \quad \dots \quad 1 \quad).$ will we to the addition of the second stands of the second and a second A second start and second start second starts $(1,1,\dots,\underline{n}) = (1,1,\dots,\underline{n}) = (1,1$. I was a state of the second se and the second second

Materials and methods

÷.,

 $\mathbf{f} = \mathbf{f} =$

MI - A. A.

 $\mathbf{f}_{\mathbf{n}} = \mathbf{f}_{\mathbf{n}} =$

 $\sum_{2+}^{2+} \mathbf{M} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}$ E E we as the second s . f. -10 m. , or stream construction of the \ldots $\mathbf{f} \mathbf{0}$ $\mathbf{\tilde{f}}$ \cdots $\mathbf{1} \mathcal{H}$ $\mathbf{0}$ \mathbf{f} $\mathbf{\tilde{f}}$ y at a first and a second of the second of the $\mathbf{f}_{1} = \mathbf{f}_{1} = \mathbf{f}_{1}$ $\mathbf{M} = \mathbf{M} + \mathbf{M} +$ and the function of the second s $= \cdots = ()^{m} \cdots = ()^{m} ($ and the second The second s a sector of a line

and the set of the second set martel i tilde francis for dellar f and the second states of the second states and the second states a $\mathbf{\mathbf{w}} = \begin{bmatrix} \mathbf{w} & \mathbf{w} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{w} & \mathbf{w} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{$ $\overset{\text{m}}{\overset{\text{m}}{}}, 0, 0, \ldots, \overset{\text{m}}{\overset{\text{m}}{}}, 1, \overset{\text{m}}{\overset{\text{m}}{}}, \frac{}{\overset{\text{m}}{}}, \frac{}{\overset{m}}{\phantom{}}, \frac{}{\overset{m}}{}}, \frac{}{\overset{m}}{\phantom{}}, \frac{}{\overset{m}}{\phantom{}}, \frac{}{\overset{m}}{\phantom{}}, \frac{}}{\overset{m}}{\phantom{}}, \frac{}{\overset{m}}{\phantom{}}, \frac{}}{\overset{m}}{\phantom{}}, \frac{}}{\overset{m}}{\overset{m}}{\overset{m}}{}, \frac{}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{\overset{m}}{}}, \frac{}}{\overset{m}}{\overset{m}}{$ $\int \frac{1}{2} \int \frac{$ $\lim_{m \to \infty} \frac{1}{m} \int \frac{1}$ $\begin{array}{c} 0. \\ \mathbf{m} \\ 120 \end{array}). \\ \begin{array}{c} & & \\ \mathbf{m} \\ \mathbf{m$ $\mathbf{M} = \{ \mathbf{x}_{\mathbf{M}} \mid \mathbf{x}_$ I have a second start of the second start of t I want the stand of the stand of the stand of the $f_{1} = f_{1} + f_{1$ $= \frac{1}{2} \left[\frac{1}{2}$

 $\mathbf{x}_{1} = \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2}$

 $Table 1 \quad \dots \not = \inf \{ f_{1}, f_{2}, f_{3}, f_{3}, f_{3}, f_{3}, \dots , f_{n} \}$

· •1	02	02	02	02	02 10	02 11	02 12	0 1	0 2	0	0	0
· · · · ·	2.	0.	2.	2.	2.0	21. 0	1.	1.0	1.	1.	20. 0	2.0
· · · · · · · ·	2.	2.1	2 .1	2.0	20.	1.1	1.0	1.	1.0	1 .20	1.	22. 0

Ρ.,

a 1 m - to a stranger of the second s ···· 1 "....

 $\mathbf{M} = \mathbf{M} =$

· · · · · · · · · · · · · · · ·

, 2+,

., fi., , , ff

Fig. 1

, 2+_

a second property and the second s $(\ldots, t') f \not\sim \ldots f (f \not\sim \ldots) f (f \not \rightarrow \ldots) f (f \not\sim \ldots) f (f \land \ldots) f (f$ E E 200.

Results

····· . '.,. f ·

²⁺, g²⁺- P.

u u , +- P. . .

 $0.2 \frac{1}{100} \frac{1}{100}$ $(-2 \le 0.12)$ $(0. \quad \S \ 0.2 \quad 1.2 \ \S \ 0.21 \quad 1.4 \quad 1$ and the second second

and the second s

and proton in the second second second $\cdots \cdots \cdots !_{\eta} \cdots \mathbf{f} \cdot \cdots \cdot \mathbf{f} \cdot \mathbf{1} \cdot \mathbf{2}.$ · · • - $(1.0 \text{ S} \cdot 1)_{\text{m}} \sim (2.0 \text{ S} \cdot 1)_{\text{m}}$ $(1. \quad \S \ 0. \ 2 \ / \)$

· · • · · · • $(2 \cdot S \cdot I_{M} + (2 \cdot$

 $\begin{array}{c} \mathbf{M} \\ \mathbf{$ $(<0.01), \mathbf{x}^{(1)}, \mathbf{y}^{(1)}, \mathbf{y}^{(1)}, \mathbf{y}^{(1)}, \mathbf{y}^{(1)}, \mathbf{y}^{(1)}, \mathbf{x}^{(1)}, \mathbf{y}^{(1)}, \mathbf{y}^{($ t . . . **f** 1.1 (1,1) (1,1.... for the second sec

.

Discussion

من الم المعني المعنية ا provide a second of the state of the second se

firia สาร์ แ +....). (+ ** fi. . . . والمجمع بالمراجع برجمع المراجع

Deringer

a fear and a second production of the second s Later of management of the management The state of the s and a state of the second s Internet at the second se Martin and an and a start and a start of the The second se $= \prod_{i=1}^{n} \left[\int_{\mathcal{A}_{i}} dx_{i} dx_{i} + \int_{\mathcal{A}_{i}} \int_{\mathcal{A}_{i}} dx_{i} dx_{i$ $\mathbf{x} = \mathbf{x} + \mathbf{x} +$ $= \mathbf{f} \cdot \mathbf{v} \cdot \mathbf{g} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{v} \cdot \mathbf{h} + \mathbf{h} \cdot \mathbf{h}$ whether and from the company from the second and part a marker construction of the second

- A market and the second s $= \mathbf{M}^{-1}$ 2000), t antiferration of the state of the second state $= \frac{1}{2} \left(\frac{1}{2} + \frac$ and the construction of the company of the company of the $\begin{array}{c} \cdot & \cdot & \cdot \\ & \cdot & \cdot \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M} & \mathbf{M} & \mathbf{M} \\ & \mathbf{M}$

Acknowledgments $\mathbf{f} = \mathbf{f} \cdot \mathbf{f} \cdot$

References

- $\mathbf{M} + \mathbf{M} +$

- 112
- ···· , ··· , ··· , ··· , ··· , ··· / ~ (1) ···· - $= \frac{1}{2} \left[\frac{1}{2}$
- $f_{1} = \frac{1}{10}$ $f_{1} = \frac{1}{10}$
- Marine a straight and the state of the state
- 1 K-
- $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$
- $\begin{array}{c} \mathbf{x} = \mathbf{x} + \mathbf$ (). E. . 111
- . • ж • См Стор
- (1 1) and merel for the factor of the factor of the second 1 1

- \mathbf{K} $(t, t) \neq 0$ \mathbf{K} (1, t) = 0 \mathbf{K} (1, t) = 01 1 2 111 12
- $\prod_{i=1}^{n-1} K, \quad \dots, \quad \gamma \neq \dots, \quad \gamma \neq \dots, \quad \gamma \neq \dots, \quad (1 \quad) \quad \forall \neq \gamma$
- $\mathbf{M} = \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} & \mathbf{M}$
- $\mathbf{f}_{\mathbf{M}} = \mathbf{f}_{\mathbf{M}} =$ ية من المالي المن المالي من المالي (1). 101
- $\mathbf{K}_{\mathbf{n}} = \left\{ \begin{array}{c} \mathbf{K}_{\mathbf{n}} \\ \mathbf{K}_{$ L. t. σ₁, σ₁, σ₂, σ₂,
- $, \quad \dots \quad (200 \) \quad \dots \quad (1 \ \dots \ \mathbf{f} \ \mathbf{f} \ \dots \ \mathbf{f} \ \mathbf{f} \ \dots \ \mathbf{f} \ \mathbf{f$ Κı and the first of the sector of
- $\mathbf{K} = \mathbf{I} + \mathbf{I} +$

- $\mathbf{x} = \mathbf{x} + \mathbf{x} +$ **л.** $\begin{array}{c} \mathbf{M} & [\ \mathbf{M} \\ \mathbf{M}$

- $\begin{array}{c} \mathbf{M}_{1} = \mathbf{M}$
- 112 2 2 (2000)
- $\mathbf{E} = \mathbf{E} =$
- $\mathbf{M} = \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} & \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf{M} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{M} \\ \mathbf$

- $(\mathbf{x}, \dots, \mathbf{x}, \dots, \mathbf{x}), \mathbf{E}$
- 120().
- (1 1) = (1 -